
CHAPTER 14 

Noise in Active Networks 
 
 
14.1  INTRODUCTION  
Having done a stability check and having met the gain requirements of an amplifier, the 
next important point to consider is noise.  In an RF/microwave amplifier, the existence of 
noise signal plays an important role in the overall design procedure and needs to be 
grasped before a meaningful design process can be developed.    
 
Noise power results from random processes that exist in nature.  These random processes 
can be classified in several important classes each generating a certain type of noise 
which will be characterized shortly.   

Some of the most important types of random processes are:   
1. Thermal vibrations of atoms, electrons and molecules in a component at any 

temperature above 0° K.  

2.   Flow of charges (electrons and/or holes) in a wire or a device.    

3.  Emission of charges (electrons or ions) from a surface such as the cathode of a diode 
or an electron tube, etc.    

4. Wave propagation through atmosphere or any other gas   
14.2  IMPORTANCE OF NOISE   
Noise is passed into a microwave component or system either from an external source or 
is generated within the unit itself.  Regardless of the manner of entrance of the noise 
signal, the noise level of a system greatly affects the performance of the system by setting 
the minimum detectable signal in the presence of noise.  Therefore it is often desirable to 
reduce the influence of external noise signals and minimize the generation of noise 
signals within the unit, in order to achieve the best performance.    
 
 



14.3  NOISE DEFINITION   
Since noise considerations are of important consequences, we need to define it first:   

DEFINITION - ELECTRICAL NOISE (OR NOISE): Is defined to be any unwanted electrical 
disturbance or spurious signal.  These unwanted signals are random in nature and are 
generated either internally in the electronic components or externally through impinging 
electromagnetic radiation.    
 
Since signals are totally random and uncorrelated in time, they are best analyzed though 
statistical methods.  Their statistical properties can be briefly summarized as:   
a.  The "Mean value" of the noise signal is zero, i.e., 
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Where Vn is the noise mean value, Vn(t) is the instantaneous noise voltage, t1 is any 
arbitrary point in time and T is any arbitrary period of time ideally a large one 
approaching ∞.    
 
b. The "mean-square-value" of the noise signal is a constant value, i.e., 
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c.    The "root-mean-square" (rms) of a noise signal is given by: 
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The concept of "root-mean-square value" of noise as given by Equation (14.3), is based 

on the fact that the "mean-square value", 2
nV , is proportional to the "noise power".  Thus 

if we take the square root of Equation (14.2), we obtain the "rms value" of the noise 
voltage which is the "effective value" of the noise voltage. 
 
 
14.4 SOURCES OF NOISE   
There are several types of noise which needs to be defined:   

a. DEFINITION -THERMAL NOISE (ALSO CALLED JOHNSON NOISE OR NYQUIST NOISE): is 
the most basic type of noise which is caused by thermal vibration of bound charges and 
thermal agitation of electrons in a conductive material.  This is common to all passive or 
active devices.    
 



b. DEFINITION -SHOT NOISE (OR SCHOTTKY NOISE ): is caused by random passage of 
discrete charge carriers (causing a current "I", due to motion of electrons or holes) in a 
solid state device while crossing a junction or other discontinuities.  It is commonly found 
in a semiconductor device (e.g. in a pn junction of a diode or a transistor) and is 
proportional to (I)1/2 . 
 
c. DEFINITION -FLICKER NOISE (ALSO CALLED 1/f NOISE): is small vibrations of a 
current due to the following factors:   

1. Random injection or recombination of charge carriers at an interface, such as at a 
metal semiconductor interface (in semiconductor devices).    

2. Random charges in cathode emissions of electric charges such as at a cathode-air 
interface (in a thermionic tube).    

Flicker noise is a frequency-dependent noise, which distorts the signal by adding 
more noise to the lower part of the signal band than the upper part. It exists at 
lower frequencies, almost from DC extending down to approximately 500 kHz to 1 MHz 
at a rate of –10 dB per decade. 
 
 
14.5 THERMAL NOISE ANALYSIS 
To analyze noise, let us consider the circuit shown in Figure 14.1a where a noisy resistor 
is connected to the input port of a two-port network. Focusing primarily on thermal noise, 
we note that the available noise power (i.e. maximum power available under matched 
conditions) from any arbitrary resistor has been shown by Nyquist to be: 
PN = kTB       (14.5) 
Where, 
k= Boltzmann's constant (=1.374x10-23 J/K).  
T= The resistor's physical temperature. 
B= The 2-port network's bandwidth (i.e., B= fH-fL). 

Since the noise power does not depend on the center frequency of operation but only on 
the bandwidth, it is called "white noise" as shown in Figure 14.1b.   

There are a few observations about noise power (PN) which is worth considering:   
a. As bandwidth (B) is reduced, so does the noise power which means narrower 
bandwidth amplifiers are less noisy,   

 



b. As temperature (T) is reduced, the noise power is also lessened which means cooler 
devices or amplifiers generate less noise power,   
c. Increasing bandwidth to infinity causes an infinite noise power (called ultraviolet 
catastrophe) which is incorrect since (14.5) for noise power is only valid up to 
approximately 1000 GHz.  
 
 
14.6 NOISE MODEL OF A NOISY RESISTOR 
A noisy resistor (RN) at a temperature (T) can be modeled by an ideal noiseless resistor 
(RNO) at 0 °K in conjunction with a noise voltage source (Vn,rms) as shown Figure 14.2. If 
we assume that the resistor value is independent of temperature then RNO=RN.  

 

 
 
From this model, the available noise power to the load (under matched condition) is 
given by (see Figure 14.3): 
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Equation (14.17) provides the noise power available from a noisy resistor which equals 
Equation (14.5) for any arbitrary resistor.  Thus: 
PN=kTB        (14.7a) 

NNNrmsn, kTBR2RP2V ========     (14.7b) 

 
From Equation (14.7) we can observe that the noise voltage is proportional to ( R1/2 ). 
Thus higher-valued resistors have higher noise voltage even though they provide the 
same noise power level as the lower-valued resistors. 
 ______________________________________________________ 
EXAMPLE 14.1 
Calculate the noise power (in dBm) and rms noise voltage at T=290°K for 
a. RN=1 Ω, B=1 Hz 



b. RN=2 MΩ, B=5 kHz.  
 
Solution: 
a. The noise power is given by: 
k=1.374x10-23 J/°K  
PN=kTB=1.374x10-23 x290x1=3.985x10-21 W 
Or in dBm, we have: 
PN(dBm)=10log(3.985x10-21/10-3)=-174 dBm 
This is the power per unit Hz. The corresponding noise voltage for a 1 Ω resistor is given 
by: 

1121
NNrmsn, 10x6.121x10x985.32RP2V −−−−−−−− ============ V 

=12.6x10-5  µµµµV 
b. For a 5 kHz bandwidth, we have  
PN=kTB=3.985x10-21x5000=19.925x10-18 W 
The corresponding noise voltage for a 2 MΩ resistor is given by 

6618
NNrmsn, 10x6.1210x2x10x925.192RP2V −−−−−−−− ============ V 

=12.6 µµµµV 
_______________________________________________________ 
 
 
14.7  EQUIVALENT NOISE TEMPERATURE   
Any type of noise, in general, has a power spectrum which can be plotted in the 
frequency domain. If the noise power spectrum is not a strong function of frequency (i.e., 
it is "White" noise) then it can be modeled as an equivalent thermal noise source 
characterized by an "equivalent noise temperature" (Te).    
 
To define "the equivalent noise temperature" (Te), we consider an arbitrary white noise 
source with an available power (PS) having a noiseless source resistance (RS) as shown in 
Figure 14.4a. This white noise source can be replaced by a noisy resistor with an 
equivalent noise temperature (Te) defined by:  
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Where B is the bandwidth of the system or the component under consideration.   

 



_______________________________________________________ 
EXAMPLE 14.2:  
Consider a noisy amplifier with available power gain (GA) and bandwidth (B) connected 
to a source and load resistance ( R ) both at T=TS as shown in Figure 14.5. Determine 
the overall noise temperature of the combination and the total output noise power if the 
amplifier all by itself creates an output noise power of Pn. 

Solution: 
To simplify the analysis, let us first assume that the source resistor is at T=0°K. This 
means that no noise enters the amplifier, i.e., PNi=0.  
 
The noisy amplifier can be modeled by a noiseless amplifier with an input resistor at an 
equivalent noise temperature of: 
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Te is called the equivalent noise temperature of the amplifier "referred to the input" as 
shown in Figure 14.6. 

   
 
Since source resistor ( R ) is at a physical temperature other than zero (T=TS) , then as a 
result the combined equivalent noise temperature (Te

') is the addition of the two noise 
temperatures: 
Te

'=Te+TS       (14.10) 
Assuming the noise power at the input terminals of the amplifier is PNI  (=kTSB), the total 
output noise power due to the amplified input thermal noise power will be (GAPNi) which 
adds to the amplifier's generated noise power (Pn) linearly by using the superposition 
theorem (see Figure 14.7), i.e., 
PNo,tot=GAPNi+Pn=GAkB(TS+Te) 
PNo,tot= GAkBT e

'      (14.11) 



 
NOTE: It is important to note that from (14.11), the "equivalent noise temperature" (Te

') 
is defined by "referring" the total output noise power to the input port. Thus the same 
noise power is delivered to the load by driving a "noiseless amplifier" with a resistor at 
an equivalent temperature (Te

'=Te+TS). 
_______________________________________________________ 
 
14.7.1 A Measurement Application: Y-Factor Method 
The concept of equivalent noise temperature is commonly used in the measurement of 
noise temperature of an unknown amplifier using the "Y-factor method". In this method, 
the physical temperature of a matched resistor is changed to two distinct and known 
values:   
a. One temperature (T1) is at boiling water (T1=100°C) or at room temperature (T1=290 

°K),  
b. The second temperature (T2) is obtained by using either a noise source   

(hotter source than room temperature) or a load immersed in liquid nitrogen at T=77 
°K (a colder source than room temperature) as shown in Figure 14.8. 

 

 
 
The amplifier's unknown noise temperature (Te) can be obtained as follows:   
PNo,1=GAkB(T 1+Te)      (14.12) 
PNo,2=GAkB(T 2+Te)      (14.13) 
 
Now define:  
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Thus we can write: 
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From a measurement of T1, T2 and Y the unknown amplifier's noise temperature (Te) can 
be found.  
 
POINT OF CAUTION : To obtain an accurate value for Y, the two temperatures ideally must 
be far apart; otherwise Y≈1 and the denominator of Equation (14.15) will create 
relatively inaccurate results.   
 
NOTE: A noise source "hotter" than room temperature, as used in the Y-factor 
measurement, would be a solid state noise source (such as an IMPATT diode) or a noise 
tube. Such active sources, providing a calibrated and specific noise power output in a 
particular frequency range, are most commonly characterized by their "excess noise 
ratio" values vs. frequency. The term "excess noise ratio" or ENR is defined as: 
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where PN and TN are the noise power and equivalent noise temperature of the active 
noise generator, and PO and TO are the noise power and temperature of a passive 
source(e.g. a matched load), respectively. 
 
 
14.8  DEFINITIONS OF NOISE FIGURE   
As discussed earlier, a noisy amplifier can be characterized by an equivalent noise 
temperature (Te). An alternate method to characterize a noisy amplifier, is through the use 
of the concept of noise Figure which we need to define first. 

DEFINITION - NOISE FIGURE: Is defined to be the ratio of the total available noise power 
at the output, (PO)tot, to the output available noise power (PO)i due to thermal noise 
coming only from the input resistor at the standard room temperature (TO=290 °K). 
 
To formulate an equation for noise figure (F), let us transfer the noise generated inside 
the amplifier (Pn) to its input terminals and model it as a "noiseless" amplifier which is 
connected to a noisy resistor ( R ) at noise temperature (Te) in series to another resistor ( 
R ) at T=TO, both connected at the input terminals of the "noiseless" amplifier as shown 
in Figure 14.9.  From this configuration we can write: 
Pn=GAkT eB       (14.17a) 
(PO)i=GAPNi=GAkBT O     (14.17b) 
(PO)tot=PNO=Pn+(PO)i     (14.18) 
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Or, 
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Or, in dB we can write: 
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FIGURE 14.9   A noisy amplifier 

 
From (14.19) we can see that "F" is bounded by: 
1≤≤≤≤ F ≤≤≤≤∞∞∞∞        (14.21) 
 
The lower boundary (F=1) is the best case scenario and is the noise Figure of an ideal 
noiseless amplifier where Te=0. 
 
From Equation (14.19b), we can write: 
Te=(F-1)TO       (14.22) 
 
NOTE1: Temperature (Te) is the equivalent noise temperature of the amplifier referred to 
the input. 
 
NOTE 2: Either F or Te can interchangeably be used to describe the noise properties of a 
two-port network.  However, For small noise Figure values (i.e., when F≈1), use of Te 
becomes preferable.   
 
POINT OF CAUTION : It is interesting to note that the noise Figure is defined with 
reference to a matched input termination at room temperature (TO=290 °K). Therefore if 
the physical temperature of the amplifier changes to some value other than TO, we still 
use the room temperature (TO=290 °K) to find the noise figure value.  
 
14.8.1 Alternate Definition of Noise Figure   
From Equations (14.17) and (14.18), we can write: 
PNO=GAPNi+Pn      (14.23) 
(Po)i=GAPNi       (14.24) 
Where Pn=GAkT eB is the generated noise power inside the amplifier. The noise figure 
can now be written as: 
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The available power gain (GA) by definition is given by: 
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where 
OSP  and 

iSP  are the available signal power at the output and the input, 

respectively. Thus Equation (14.25) can now be written as: 
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where (SNR)i and (SNR)o are the available signal-to-noise ratio at the input and output 
ports, respectively. 
 
Equation (14.26) indicates that the noise figure can also be defined in terms of the ratio of 
available signal-to-noise power ratio to the available signal-to-noise power ratio at the 
output 
  
14.8.2  Noise Figure of a Lossy Two-Port Network   
This is an important case, where the two-port network considered earlier, is a lossy 
passive component such as an attenuator or a lossy transmission line, as shown in Figure 
14.10.   

 

 

A lossy network has a gain (
i

O
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P
G ==== ) less than unity which can be expressed in terms 

of the loss factor or attenuation (L) as:  
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Since the gain of a lossy network is less than unity it follows that the loss or attenuation 
factor (L) is more than unity (i.e., L=Pi/Po>1) for any lossy network or component. 
 
Expressing the attenuation factor (L) in "dB" gives the following: 
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For example, if the lossy component attenuates the input power by ten times, then we can 
write: 
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If the lossy network is held at a temperature (T), the total available output noise power 
according to Equation (14.5) is given by: 
PNO=kTB         (14.29) 
 
On the other hand, from (14.23) the available output noise power is also given by the 
addition of the input noise power and the generated noise inside the circuit (Pn):  
PNO=GAkTB + Pn=KTB/L+P n       (14.30) 
where Pn is the noise generated inside the two-port. Equating Equations (14.29) and 
(14.30), we obtain Pn as:  
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NOTE: If we refer the noise generated inside the amplifier (Pn) to the input side (Pn)i, 
from (14.31a) we have: 
(Pn)i=Pn/GA=LPn=(L-1)kTB     (14.31b) 
 
Using Equations (14.31) we can now define the equivalent noise temperature (Te) of a 
lossy two-port, referred to the input terminals, as: 
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Thus the noise figure of a lossy network is given by: 
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A SPECIAL CASE: 
For a lossy network at room temperature, i.e., T=To, Equation (14.33) gives: 
F=L         (14.34) 
 
Equation (14.34) indicates that the noise figure of a lossy network at room temperature 
equals the attenuation factor (L). For example: if GA=1/5 then L=1/GA=5, giving F=5 or 7 
dB for T=To=290 K. 
______________________________________________________ 
Example 14.3  
A wideband amplifier (2-4 GHz) has a gain of 10 dB, an output power of 10 dBm and a 
noise figure of 4dB at room temperature. Find the output noise power in dBm.  
 
Solution: 
B=2 GHz 



GA=10 dB 
F=4 dB 
F=PNO/GAPNi=PNO/GAkToB 
Thus:  
PNO=FGAkToB 
10 log10PNO=PNO(dB)=F(dB)+GA(dB)+10 log10(kTo)+10 log10(B) 
       =4+10-174+10 log10(2x109)= -67  dBm 
______________________________________________________ 
 
14.9 NOISE FIGURE OF CASCADED NETWORKS   
A microwave system usually consists of several stages or networks connected in cascade 
where each adds noise to the system thus degrading the overall signal-to-noise ratio.    
If the noise figure (or noise temperature) of each stage is known, the overall noise figure 
(or noise temperature) can be determined.    
 
14.9.1  Cascade of Two Stages 
To analyze a two stage amplifier, let us consider a cascade of two amplifiers each with its 
own gain, noise temperature or noise figure as shown in Figure 14.11. The noise power of 
each stage is given as follows: 
PNO1=GA1kB(T o+Te1)      (14.35) 
PNO2=GA2PNO1+GA2kT e2B     (14.36) 

 
Combining Equations (14.35) and (14.36) we get: 
PNO2=GA1GA2kB(T o+Te1+Te2/GA1)    (14.37) 
The two-stage amplifier as a whole has an total gain of GA=GA1GA2, an overall equivalent 
noise temperature (Te) and a total output noise power (PNO) given by: 
PNO=GAkB(TO+Te)      (14.38) 
Comparing Equation (14.38) to (14.37) we have: 
Te=Te1+Te2/GA1      (14.39) 
 
The overall noise figure (F) for the two-stage amplifier is found by using (14.39): 
F=1+Te/To=1+(Te1+Te2/GA1)/To    (14.40) 
By noting that: 
F1=1+Te1/To,       (14.41) 
F2=1+Te2/To       (14.42) 
Equation (14.40) can be written as: 
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Equations (14.39) and (14.43) show that the first stage noise figure F1 (or noise 
temperature, Te1), and gain (GA1) have a large influence on the overall noise figure (or 
noise temperature). This is because the second stage noise figure, F2 (or noise 
temperature, Te2) is reduced by the gain of the first stage (GA1). 
 
Thus the key to low overall noise figure is a primary focus on the first stage by reducing 
its noise and increasing its gain. Later stages have a greatly reduced effect on the overall 
noise figure. 
 
NOISE MEASURE 
In order to determine systematically the order or sequence in which two similar 
amplifiers need be connected to produce the lowest possible noise figure, we first must 
define a quantity called "noise measure" as:   
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If amplifier #1 (AMP1) has a noise measure (M1) and amplifiers #2 (AMP2) a noise 
measure (M2) then there are two possible cases which needs to be addressed (in order to 
obtain the lowest possible noise form the cascade), as follows: 

Case I: M1<M2 -- Then AMP1 should precede AMP2 since F12<F21 

Case II: M2<M1 -- Then AMP2 should precede AMP1 since F21<F12 

Where F12 is the overall noise figure of the two stage amplifier when AMP1 precedes 
AMP2; and vice versa F21 is for the case when AMP2 precedes AMP1. 
 
NOTE: It can easily be shown mathematically that for example: 
If M1<M2 then F12<F21     (14.45) 
where 

1A

2
112 G

1F
FF

−−−−++++====       (14.46) 

2A

1
221 G

1F
FF

−−−−++++====       (14.47)   

And vice versa, if M2<M1 then F21<F12. 
_______________________________________________________ 
Example 14.4  
An antenna is connected to an amplifier via a transmission line which has an attenuation 
of 3 dB (see Figure 14.12). The amplifier has the following specifications: 
GA=20 dB 
B=200 MHz 
Te=145 K 
Calculate the overall noise figure and gain of the cascade at 300 K. 



 
 
 
Solution: 
a. For the transmission line we have: 
Since L=1/GTL ⇒ L(dB)=-GTL(dB) 
L=3 dB=2  ⇒ GTL=-3 dB=1/2 
FTL=1+(L-1)T/To=1+(2-1)300/290=2.03=3.1 dB 
b. For the amplifier we have: 
FAMP=1+Te/To=1.5=1.8 dB 
c. The overall noise figure and gain are calculated to be: 
FTOT=FTL+(FAMP-1)/GTL=2.03+(1.5-1)/0.5=3.03=4.8 dB 
GTOT=GTL+GAMP=-3+20=17 dB 
 
Therefore we can see that due to the addition of a lossy transmission line in front of the 
amplifier, we have three deleterious effects: 1) the overall noise figure has increased 
(from 1.8 dB to 4.2 dB) 2) the second stage noise contribution has been intensified since 
the transmission line has a gain less than unity (GTL<1), and 3) the overall gain dropped 
by 3 dB which represents the third side effect. 
______________________________________________________ 
 
14.9.2  Cascade of n Stages 
For a cascade of "n" amplifiers (see Figure 4.13), the overall noise figure is the 
generalization of equations for equivalent noise temperature (Te,cas) and noise figure (Fcas) 
of a two-stage cascade as follows: 
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SPECIAL CASE : IDENTICAL STAGES  
If all stages are identical, i.e., 
GA1=GA2=....=GAn=GA     (14.49a) 
Te1=Te2=.....=Ten=Te      (14.49b) 
F1=F2=......=Fn=F      (14.49c) 
 
Then Equations (14.48a,b) would greatly simplify as follows: 
Te,cas=Te(1+X+X2+....+Xn-1),     (14.50a) 
Fcas=(F-1)(1+X+X2+....+Xn-1)+1    (14.50b) 
Where 
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Using the following identity for the geometric series: 
1+X+X2+.....+Xn-1 = (1-Xn)/(1-X),   |X|<1      (14.51) 
 
We can write Equations (14.50a,b) as: 
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AN INFINITE CHAIN OF IDENTICAL AMPLIFIERS  
If n is very large (i.e., n→ ∞) then: 
Lim n→→→→∞∞∞∞(X)n =0,    |X|<1     (14.53a) 
And the geometric series identity in Equation (14.51) further simplifies into: 

1+X+X2+.....+Xn-1+.... =
X1

1
−−−−

,    |X|<1               (14.53b) 

Using Equation (14.53b), we can see that Equations (14.52a,b) and  for an infinite chain 
of amplifiers become: 
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In terms of "noise measure", M, defined earlier as: 
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we can write (14.54) as: 
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1MFcas ++++====        (14.56b) 

 
NOTE 1: For a "Minimum-noise amplifier", where each stage operates at minimum noise 
figure (i.e., F1=F2=....=Fn=Fmin), we have: 
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We can write (14.56) as: 
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1MF mincas ++++====       (14.58b)    

NOTE 2: If the gain of each stage is very large (i.e.,   GA→ ∞), then Equation (14.56) 
becomes: 
GA→→→→ ∞∞∞∞  ⇒⇒⇒⇒ M=F-1      (14.59) 
Te,cas=Te        (14.60a) 
Fcas=F        (14.60b) 
 
This result indicates that a large cascade of very high-gain amplifiers will only result in 
the degradation of the signal by the first stage and the effect of all the many stages is null 
and void as far as the added noise is concerned.  
 
This result is in agreement with the conclusion made earlier, in which it became apparent 
that the first stage's gain and noise figure value dominates and greatly affects the overall 
noise figure of the cascade. 
 
 
_______________________________________________________ 
Chapter 14- Symbol List 
A symbol will not be repeated again, once it has been identified and defined in an earlier 
chapter, with its definition remaining unchanged. 
B - Bandwidth 
F - Noise Figure 
k - Boltzmann’s constant 



M - Noise measure 
N - Overall noise Figure 
PN - Noise power 
PNI - Input Noise power 
PN0,tot - Total output noise power 
RN - Noisy resistor 
RN0 - Noiseless resistor 
T - Temperature 
Te - Equivalent noise temperature 
T0 - Standard room temperature (290° K) 
TS - Source and load temperature 
Vn,rms- Root-mean-square (rms) of noise 

2
nV - The mean-square value of noise 

 
 
CHAPTER-14 PROBLEMS 
 
14.1)  The Y-factor method is to be used to measure the equivalent noise temperature of 

a component.  A hot load of T1=300 K and a cold load of T2=77 K will be used.  
If the noise temperature of the amplifier is Te=250 K, what will be the ratio of 
power meter readings at the output of the component for the two loads?   

14.2)  A transmission line has a noise figures F=1 dB at a temperature TO=290 K. 
Calculate and plot the noise figure of this line as its physical temperature ranges 
from T=0 K to 1000 K.    

14.3)  Assume that measurement error introduces an uncertainty of ∆Y into the 
measurement of Y in a Y-factor measurement.  Derive an expression for the 
normalized error of the equivalent noise temperature (∆Te/Te) in terms of (∆Y/Y) 
and the temperatures T1, T2 and Te.  Plot (∆Te/Te) as a function Te for two values 
of  (∆Y/Y): a) 0.1, and b) 0.20, and from these plots establish the minimum 
normalized error (∆Te/Te) and the corresponding Te for each case. 

14.4)  An amplifier with a bandwidth of 1 GHz has a gain of 15 dB and a noise 
temperature of 250 K.  If it is used as a preamplifier in a cascade, preceding a 
microwave amplifier of 20 dB gain 5 dB noise figure, determine the overall noise 
temperature. 

14.5) An amplifier with a gain of 12 dB, a bandwidth of 150 MHz and a noise figure of 
4 dB feeds a receiver with a noise temperature of 900K.  Find the noise figure of 
the overall system.    

14.6) Consider the microwave system shown in Figure P14.6,  where the bandwidth is 1 
GHz centered at 20 GHz and the physical temperature of the system is TO=300 K.  
What is the equivalent noise temperature of the source? What is the noise input of 
the amplifier in dB? When the noisy source is connected to the system what is the 
total noise power output of the amplifier in dBm?   



 
14.7) Consider the wireless local area network (WLAN) receiver front-end shown in 

Figure P14.7, where the bandwidth of the bandpass filter is 100 MHz centered at 
2.4 GHz.  If the system is at room temperature, find the noise figure of the overall 
system.  What is the resulting signal to noise ratio at the output if the input signal 
power level is -90 dBm? Can the components be rearranged to give a better noise 

figure?   
14.8) A two-way power divider has one output port terminated in a matched  

load as shown in Figure P14.8.  Find the equivalent noise temperature of the 
resulting two-Port network if the divider is an equal-split two-way resistive 
divider.  
 

 
 

14.9) For a two-stage cascaded network with gain values of G1 and G2 and  
noise figures of F1 and F2 as shown in Figure P14.9, the input noise power is 
Ni=kTB. The output noise power is N1 and N2 at the output of the first and second 
stages. Are the following expressions correct: 
a. F1=N1/G1Ni   
b. F2=N2/G2N1 

c. F2=N2/G1G2F2Ni 

 



 

 
14.10)  A receiver has the block diagram shown in Figure P14.10.  Calculate:  

a. The total gain (or loss) in dB, 
b. The overall noise Figure in dB.  

 
 

14.11)  Two satellite receiver systems have the following specifications for  
their components: 
RF Amplifier:     F=5 dB, G=10 dB  
Mixer:                 Lc=5 dB   
IF amplifier:        F=2 dB, G=15 dB 
Bandpass filter:   IL=2 dB 
Compare the two systems in terms of the overall gain and noise figure values (see 
Figure P14.11).  

  
 
14.12)  Calculate the overall noise Figure and gain for the receiver system shown in 

Figure P14.12.  

 
 



 
14.13)  The S parameters and the noise parameters of a GaAs FET at 10 GHz are: 
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Fmin=2.5 dB 
ΓΓΓΓO=0.5∠∠∠∠145°°°° 
Rn =5 Ω 
a. Is the transistor unconditionally stable?   
b. Determine GA,max 

c. Determine the noise figure if the transistor is used in an amplifier designed for 
maximum available gain (GA,max) 

14. 14) Consider the low noise block (LNB) shown in Figure P14.14. Calculate the total 
noise figure and the available gain of this block.  

 

 
 


