Part 1: Introduction to Crystal Properties
Semiconductors

- Solid materials

- Semiconductor Latices

- Miller Indices

1.1 INTRODUCTION TO CRYSTAL PROPERTIES

In studying solid state electronic devices, weiaterested in the electrical behavior of solids.
Charge transport depends on:

a) Properties of electron} (e

b) Arrangement of atoms iae solid
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Some basic properties of semiconductors compaitadother solids are presented in this
section. This section also covers crystal strustofesemiconductor as well as types of
semiconductors.

Solid state materials are divided into:

a) Insulators
b) Semiconductors
c) Metals

Semiconductors are a group of materials with cotdtycwhich lie between insulators and
metals.



Insulators (®10< o < metals(16)

where o = electrical conductivity
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SEMICONDUCTORS
Semiconductors are divided into two types:

a) Elemental: Made up of single species of atoms. e.g. Si,Gaupen IV of the periodic
table)

b) Inter metallic or compound: Made up of atoms belonging to column Il & V andl
\
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Periodic Table
1 1l v V VI
Zn B C P S
Cd Al Si As Se
Ga Ge Sb Te
In
Elemental [V compound [1I-V compound [I-IV compound
Si SiC GaAs Cd Te
C Si Ge GaP Cd Se
In As n S
InP Zn Se
Al As Zn Te
Al P CdS

Applications:
a) Ge: Was popular for x tors and diodes in ead#ys
b) Si: Is now used for x tors, diodes and ICs
¢) Compound semiconductors: Are widely used imlsgeed devices and devices requiring
emission or absorption of light.
Examples: 1) Ga As -(binary IlI-\8ed in microwave IC (MMIC)
2) Ga As,Ga P edus1 LEDs, photonic devices
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LED

3) Ga As(ternappmpound) and In Ga As p (quaternary
compound)

these adtr@Rexibility
4) Zn S(binakMl) -used in TV screens
5) Pb Te,Hg Cd Te,In Sb,Cd3sed in light detectors
6) Si&Ge: Used in Infra-red amatlear radiator detectors
7) Ga As,In P: Used in microwalevices e.g. Gunn diode

8) Ga As,Al Ga As: Used in seomductor lasers
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Laser
opposite of LED



SOLID MATERIALS
Solid materials classified by atomic arrangement:

1) Crystalline Solid or Crystal:

(a) Crystalline

Atoms making up the crystal are arranged in aopiifashion.

The periodic arrangement of atoms in a crystahiked the” lattice “.

A “unit cell” is a volume which is representative of the eréitece and is regularly
repeated throughout the crystal.

Example: Lam-grown silicon

2) Polycrystalline Solid: Is composed of many smatfioaes of single crystal material.
Example: Randomly cooled ped Si or Ge.



(c) Polycrystalline

3) Amorphous Solid: Is composed of atoms having naoger structure at all. It has no
lattice.
Example: Sigfglass).

(b) Amorphous

Some Basic Unit Cells

1) Simple cubic crystal (SSC)

a = Lattice Constant (in cubic unitisél
Ex: Polonium
Number of atoms=1/unit cell

Each atom has six nearest neighbors.



SIMPLE CuUBIC
(P, etc)

2) Body-Centered Cubic Crystal (BCC):
Ex: Sodium, Tungsten

BODY-CENTERED CUBIC
(NQ, W, etfc)

Number of atoms=2/unit cell
Each atom has eight nearest neighbors (eight oafieube)

3) Face-Centered Cubic Crystal (FCC):
It has one atom at each of the six cubic facesldition to the eight corners of atom.

Number of atomsstiiic)+3(faces)=4/unit cell

FACE-
CENTERED CUBIC
(AR, Au, efc)

Each atom has 12 nearest neighbors.

Why? -Each face centered atom has 4 neighbore atimers.



Each face centered atom has 4 face centeredsheaighbors at the top half.
Each face atom has 4 face centered nearest megyabthe bottom half.

av2
b=

Ex: Al,Cu,Pt,Au

Semiconductor Lattices

1) The elemental semiconductor (Si & Ge) has a diantattide structure. This structure
also belongs to the cubic crystal family and casden as “two inter penetrating FCC
sub lattices” displaced from each other (a/4,a4},&k. a displacement of [3 /4 .
(diagonal of the cube = [3).
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A 2-Dimensional view is shown above.
Each atom is surrounded by 4 equidistant neastghbors that lie at the corners of a

Tetrahedron (a solid figure with 4 faces) formingyaamid (i.e. all sides equal).
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2) Zinc Blend Lattice:
Most of the IlI-Vj, compound semiconductors (e.g. As.Etc) have a Zende lattice
which is identical to a diamond lattice excdpttone FCC sub lattice has column l1lI
atoms (Ga) and the other has column V atoms (As)

A 2-Dimension view is shown above.

The 4 nearest neighboring atoms would lie at threeroof a tetrahedron with Ga & As.
Each having different atomic radii.
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Miller Indices

Crystal properties are different along differedangs, thus electrical and other devices
characteristics are dependent on xtal orienta#ooonvenient method of defining the various
planes in an xtal is to usenfller indices” which are obtained using the following steps:

1. Find the intercepts of the plane on the three Gmmecoordinates in terms of lattice

constant (a)
2. Take the reciprocal of these numbers (this avaitisity * )
3. Reduce numbers (of step 2) to the smallest 3 intdggeving the same ratio.



ABC = Unit Plane

HKL = a xtal plane

OA OB OC
OH 0K 'oL ) =2(hk)l)

Ex: 1) Intercepts OH = 2a
OKda

Ola=

1

2)C1/2 3 ,1) € (reciprocal)

3) (2, 1, 4¥%(multiply by 4) ==>miller indices = (2,1,4)
This is (2 1 4) plane!
Note 1: Each set of numbers define a set of pagat@es in the lattice.

Note 2: If a plane passes through the origin, i b& translated to a parallel position for
calculation of miller indices.



Note 3: If an intercept occur on the negative pérn axis, the minus sign is placed above the
index l.e. (h k1)

Note 4: For equivalent planes use {h k I}
Ex : {100}= (100),(010),(001),(T0O0)X0)&(00T)

Note 5: For a direction in a lattice a set of thietegers expressed as the multiplies of lattice
const.isused:[hkl]

Note 6: For a full set of equivalent direction usk k | >

Ex: <100> = [100],[010],[001],[100]§0]&[001]

di(ccf 10MS

Note : dir.[hKl] is perpendicular to plane (hkl}>true in cubic system!



PART 2

Energy bands and charge carriers: Basic Principles

Chapter 1: Energy bands and charge carriers

Chapter 2: Excess carriers in semiconductor



Chapter 1: Energy Bands and Charge Carriers

A specific mechanism by which electric currentwwi$oin a solid is examined. We shall learn
about good and poor conductors of electric curemtwell as examining what makes these
conductors good or bad. We will also study variatd semiconductor conductivity by changing
the temperature or the number of impurities.

1.1 — Bonding forces and energy bands
we will discuss bonding forces and energy bands

Interaction of electrons)(e neighboringin this section.
1.1.1 Bonding forces

atoms of a solid holds the crystal together. Tlagecthree types of atomic interaction in a solid
which leads to three types of bonding in crystals:

a. lonic Bonding: The crystal is made up of ions with the electrastracture of inert atoms,
but the ions have net electric charges after eleaxchange.
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Note: All electrons are tightly lbwl to atoms .No free electronics .i.e. good
insulators.

b. Metallic Bonding: In a metal, the outer electronic shell is onlytigdly filled (usually

less than or equal toBd hese electrons are loosely bound and is gipesasily to the
crystal as

a whole, so that the solid is made uposiwith closed shells immersed in a sea of free
electrons.

These electrons are free to move abouatliee under an E-field influence.

E.g. Netal



Na metal

c. Covalent Bonding:In this type of atomic interactions each atom stiats valence
electrons with its four neighbors. Each electrom-panstitute a covalent bond.

E.g. Ge,Si,C {column IV }
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Two electrons per bond

Shared electrons are tightly bound to the lattioe¢pt at T=8) and can be thermally or
optically excited out of a covalent bond and thgrebcoming free and increasing
conductivity (semiconductors).

1.1.2 Energy Bands

FACT: Electrons in an atom are restricted to sets sifrdie energy levels. Large gaps exist in
the energy scale in which no energy states ardaéai

As isolated atoms areught together to form a solid, various atomic
interactions ( 3 types of bonding ) occur betweeigimboring atoms. The forces of attractions
and repulsion between atoms will find a balandd@tproper inter-atomic spacing for the
crystal.

Similarity : Electrons in solids are restricted to certainrgies and are not allowed at other
energies.

Difference: Electrons in a solid have a range or band of alsklenergies and are not at
discrete energy levels of an atom. In a solid ikerdte energy levels of isolated atoms spread
into band of energies. These bands form practicalhtinuous levels of energies.

Reason for band of energiesBecause in the solid the wave function of elednomeighboring
atoms overlap and an electron is not necessanbliled at a particular atom, i.e. Electrons are
shared between atoms and are mobile.

Note: According to Quantum Theory, an electron lsarconsidered a wave as well as a particle.
Wave function of arelectron is the amplitude and phase of its madi®a wave.

gE. vy = a cos(wt-kt)



Conclusion: Influence of neighboring atoms on the energy keweéla particular atom causes the
shifting and splitting of energy states into enebgynds. E.g. Carbon atom ¢2s*2p°)

Carbon atoms

Conduction band 6 electrons/atom
N atoms
6N electrons

4N

states “25—2p"

N states
6 »

2N states

Energy

Valence band

“Is” 2N states
s

Diamond—"
lattice
spacing

.

Atomic separation

Note: As the distance between atoms approached thelegunt inter-atomic spacing, this band
splits into two bands separated by an energy ggp( E



Electron count: 1s band: 2N e

valencenadNe (at G K)

Conduction bafd:

1.2 Charge Carriers in Semiconductors
1.2.1 — Metals, Semiconductors , Insulators-Energyands observation:

Every solid has its own charactezistiergy band structure. This variation in band
structure causes different electrical properties.

FACT: Electric current flow in solid under an appliedi&ld depends on free electrons ability
to move into new energy states. l.e. There musiyaty allowed states available to the electron.



Insulator semi
ator Semiconductor

Observation: At room temperature, a semiconductor with 1evdogap will have a large
number of electrons in conduction band due to théexcitation, unlike an insulator.

1.2.2- Electrons and Holes:

Observation: As the temperature of a semiconductor is raisedalf k , some electrons in the
valence receive enough thermal energy to be exatteuks the band gap to the conduction band.

Convention: eellton= e

hole = h

Electron égair
EHP is equivalent to a broken bond!

Upon on generation of EHP, an electron in thedaetion band is surrounded by a large
number of unoccupied states. Similarly, holes ethliancy band contribute to charge transport



by allowing other electrons to hop around by océaugyhe hole. Thus allowing the hole to
move around.
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1.2.3- Concept of Effective Mass:

Observation: Electrons in a crystal are not completely fretibstead interact with the periodic
lattice, thus their motion cannot be expected tthieesame as for electrons in free space.

Effective mass:In applying equations of electrodynamics (sciemicelectricity in motion and
interaction with magnetic fields), an altered vatdigrarticle mass is used, to account for most of
the lattice influence. This we call Effective m#ss).

Conclusion: Using effective mass(i)) electrons and holes can be treated as almestéeiers
in most computations.

Example: for Si Ga As Ge



0.067m 0.55m

p=0.56 m 0.48m, 0.33m

m, = free electron rest mass.

1.2.4- Intrinsic Semiconductors:
Intrinsic semiconductors: Is a crystal with no impurities or lattice defeas 0° k , there are no
free electrons in conduction band and valence I&filled with electrons.

E
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Observation: At higher temperatures EHP are generated ascaleand electrons are excited
thermally across the band gap to the conductiod bBimese EHPs are the only charge carries in

intrinsic material.
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Visualization: Generation of EHPs corresponds to the breakirgpaflent bonds. The energy to

break the bond is the band gap energy E
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Observation: Since the electrons and holes are created in thersonduction band electrons
concentration (n&n’) is equal to the concentration of holes in thereaé band (p*tcn?),
thus

n=p=nfor intrinsic semiconductor
New Terms:
1. Generation: Is the creation of an EHP ( gi EHP/&8)

2. Recombination: Occurs when an electron in the conduction bandemakransition
to an empty state (hole) in the valence band.(cemination rate EHP/cH)

Observation: For an equilibrium carrier concentration, therestriae recombination of EHPs at
the same rate at which they are generated. |.g, atequilibrium ri and gi are temperature
dependent and are proportional to the equilibriemcentration of electrons and holes.

Ricnopp=a n°=gi atanytemperature (T)

Whete= proportionality constant

1.2.5 Extrinsic Semiconductor:
New Term:

1. Doping: Is the process of adding the controlled amountsiptirities to a
semiconductor crystal in order to control its regity.



Definition: When a crystal is doped such that is the equalecaoncentration yiand p are
different from intrinsic concentration{ ), The material is said to lExtrinsic. There are two
types of Extrinsic semiconductors, n-type( chargeier = € majority ),and p-type( charge
carrier = i majority )

In Short:  n-type semiconductog > p,, Nny

p-type semiconductor o>y, n
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Band Theory: When impurities or lattice defects are introduc#d an intrinsic semiconductor,
additional levels are created in the energy bandire, usually within band gap.

E" Ef' . - :I ® =
*e &4 & o o EJ‘DOM" ) Q* R
level ) .
n-{ype n-type _® o, ™
e ¢ ve -..'-. ® °.
T=0'K. T>0% (x§°k)

z..pw}fj.- Column v (P, As, .gb) => n type (as above)

Impurity: column 1l ( B,Al,Ga,In)? p-type
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Corresponding covalent bonding model of a semicondator:
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1.3. Carrier Concentration:

The purpose of this sectiontis obtain equations for carrier concentration, whihderstanding
the distribution of carriers over the available rgyestates.

Fact: Due to the nature and randomness of motion ofreles the distribution of carriers are
meaningful only by a statically method called Febiviac statics which takes into account the
indistinguishable nature of electrons, their wagtire and the Pauli Exclusion Principle.



1.3.1 Fermi-Dirac distribution

Fermi-Dirac distribution function: Is a statistical function which gives the probaypithat an
available energy states will be occupied by antedacat an absolute temperature 1) (k

f(E) =1 1_(_éE—Ef)/kt)
Where k = Boltzmann constant

E = Fermi level (very importance reference point)

Observations:

1
f(E): 2

E=e& f(0)=1 , Eo= = f(0)=0
T= f(E<E)=1/(1+e%)=1 , E<E

T=0 f(E>E) = 1/(1+€) . E>E

1
T=&> f(E) = 1/(1+8) =2

Observation: Plot of f(E) as the probability of occupancy ofarailable state at E is in the
band gap. There is no available state and no efextr

SOE)

)

Mathematically symmetry can be shown:

f( B AE) = 1 — f(§ - AE)



Position of & for semiconductor:

W ftey 1 12 0

(a) Intrinsic (b) n-type

(¢) p-type

Common practice: Is not to draw f(E) vs. E on every energy bandydien but merely to
indicate the position of&n the band diagram.

1.3.2 Electron and hole concentration at equilibrim

Using f(E) ,gand g can be found

=00

EWN(EYE
or¥~Lcﬂ IN(EYAE -------—-equation 1.3
aEv
1- FENN(EME
J - fEWE) ~-------—-----equation 1.4

where n(E)dE is the density of states in the enesigge dE.

Fact: It is shown mathematically that N(E)oiei;'E on one hand f(E) decreases very rapidly for

higher energies. As a result f(E)N(E) decreasesabpfor n, and [ 1- f(E) ]N(E) decreases
below E, for p,



(a) Intrinsic

(b) n-type

() p-type

fAC_T; EF varied

EXTrinsic S/c

as <houn —>

Electrons

NOE)J(E)
E

<

NE) [L-f{E)]

.

Carrier
concentration

FC
"’D ——————————————
increasing N,
I TP ———— = —
increasing N,
T —
E.

Fermi energy as a function of temperature (arbitrary units) for various impurity concentrations. The

temperatyre dependence of the hand gap 1s neglected.



Simplification:

Electron Concentration: If we represent all of the distributed electrstates in the conduction
band by an effective density of stateMcated at E.

then R = N f(Ec)
where f(E= e E“EVK  for (E~Ef)/kt >>1
N 2(Z M, kt/h?)*?

Thus: ny = N, eEEMK ----equation 1.5

E
1\
Ectwﬂr-' -----
L) el
/ .
! Nefee,) “mer Guc,

Similarly for hole concentration :
Po= Ny [1-f(EV)]
Where  1-f(f) = e EEIK for |(E-E )/kt|
N = 2(Z[my kt/h?)*?

Thus: P, = N, e EEK - equation 16

Observation: The two equations above (1.5 and 1.6) are validntrinsic or doped materials at
thermal equilibrium. They are general equationscorier concentrations.

1.3.3 Further Semiconductor Mathematics

For intrinsic semiconductor : ¢ E E ( middle of the band gap approximately since e
states in conduction band and valence band arequatl E is not exactly at the center of band
gap)

Intrinsic: n= N, e (Ec~EVkt
BN, o~ (EFE/Kt
=S

Then we get ;i = N.N, e =9



Note: E—-E =E

Doped:
o N, g(EENk
P N, e EFEK
Then we getgpo = NN, e FX
Since p=R o n=VNcNv g Fo2Kt _ S equation 1.7

And nepo = n?

And r|] - NC e—(EC— Ei)/kt

P=N, e—(Ef—Ei)/kt
D=
We get E — Ef-Eikt
Po .
Similarly Pi = e Ef-E)k

Ex 1: Consider a si sample withy& 10" As atoms/cr Find R at T = 306 K? What is - E
?

Solution: n =1.5¢ 10"° since N>>n  therefore = Ny= 10"/ cnt
P=n%= ny=2.25 10®cm*

We know that E E = kt In(n/n;)) = 0.0259 In(1871.5¢ 10™) = 0.407 ev

({1 ]]

1.3.4 Dependence of “n” on temperature

Intrinsic:

We know from equation 1.7 ; a VNcNv g -Edi2k

Substituting for.ldnd N

i(M)? = (Tkt/h?)>2 (my my )3 e B2 equation 1.10



The exponential term dominates the temperaturertigmee equation shown be

T (K)
500 400

[
IOI(}

IOM

2.5 x 10" em™

10'2

n; (cm™)

10\0

10#

10¢

1000/ (K)~ "



Extrinsic:

Intrinsic

Extrinsic

\ lonization

100007 (K)~"

Observation: for the temperature range of ZA000/T< 10=» 100< T< 500 K

The material carrier concentration is controlleddoping level primarily. Outside this range
EHP generation is done thermally and is not delgtab

1.3.5 Principle of charge compensation and spacearige neutrality compensation

When both donors and acceptors are present tdempreance of one of the dopants over the
other one cause the material to the either p gpe &s follows:

N >> N, = n-type (donor electrons compensated and exceegecdioles)
N>> Ny = p-type (acceptor holes compensated and exceed di@urons)

Space charge neutrality:

oPF Ng* = o + Ny ----------- eq 1.11 , i.e. all positive chagy= all
negative charges

Tofindn,and g , recall gpo= n?
Eliminate pin eql.11® no=n%no+ (Ng—Ns)

Assume N> Ng 2 ne — y Negr=- 02 = 0, Nogt = Ng — Ny >0



1
2, =2 [Nei + ( Net® + 4n2)Y2]  —ooeeeeeeees eq 1.12 ( n-type semiconductor)

And $=n?n,
Approximation:

If H>n = no=Ng— Na=Ng = --------------- eql.l.2a (if N=0,itis
n-type)

Note: If Na> Ng, find p, first.

B=n%po+ (Na—Ng) 2 p°- poNerr —n°=0

P = %[Neﬁ' + (N'e?+4n*)" | Ner = Na— Ny >0

And n=n%p, , Ner = -Neg

Approximation:
If Nee >>@=n) @ po=Na—Ng=Na (if Ng=0)
N NN p-type

1.4- Drift of Carries in an E-field

Observation: Knowledge of carrier concentrations in a solidésessary for calculating current
flow in an E-field. In addition to the values ofind p, the ease of motion, velocity of the carriers
and their collisions and scatterings with the ¢at@nd impurities must be taken into account.
The last consideration brings about the concepisatfility and conductivity as described next.

1.4.1-Mobility and conductivity:

The individual electrons and holes move in mangdalions by thermal motion during a given
period of time. On average they have a constandnifetelocity (which is must smaller than the
random speed due to thermal motion).

Vo= it and Vp=pof - memmemmeeeee---- ©Q 1.14
Where |4 = € mobility = ¢f/m',, and  pi=h" mobility = ¢f/m,,
t = mean free time (mean time between collision es)ent

Definition:



1. Mobility- The average patrticle drift velocity per unit efextield.

Drift of an eleatrand their motion.

1.4.2- Current Flow:

Current density (defined to be current per uniaare the number of carriers crossing a unit area
per unit time (¥, + p¥, ) multiplied by the charge on the carriers

T=anWe +apif =d (Nph+ pip) & = oF
Wheres = q (nph+ pHp ) is called conductivity

] =6 ohm'slaw in point form. ------------------ eq.15

I
IJI=4 and vellL

I 14 L
Fromeq1.154 =cL = V=04 |= Rl ----mmmmmmmmmmeee eq 1.16 (ohm’suain integral
form)

L L
Where Rz4 =4 , p=ocl = resistivity



Electric field
Current

; Electro tion
Hile fiotsii / cctron motion

1.4.3- Effects of Temperature and Doping on Mobili:
Fact: There are two basic types of scattering mechathst influence pland

1. Lattice Scattering: (phonon scattering) Scattering of a carrier (whlaving through the
crystal) due to vibrations of the lattice, resugtinom the temperature. Mobility decreases
as the sample is heated.

M

b

N

-
T

2. Impurity Scattering: Scattering from crystal defects such as ionizgglinties. This
type would be dominated at low temperature, sinslewly moving carrier is likely to be
scattered more strongly by an interaction of agbaion then a carrier with greater
velocity. Since the atoms of the lattice are |legtaged at low temperature, lattice
scattering thermal motion of carriers is also slowe

1 1 1

ptotal ~ pi +pl - S— --- eq1l.17




L (cm V-s)
(log scale)

Impurity scattering Lattice scattering

T (K)

As the concentration of impurities increases, fifeces of impurity scattering are felt at higher
temperatures. Not only is mobility different forobaype of carrier ( n or p), but also as the
impurity concentration increases. This decreasefusction only of the total amount of impurity
and not of their type of charge.
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A resistivity curve done by Irvin has become a dtad reference work in semiconductor
technology.
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1.4.4- High E-field Effects

Ohm's law (equation 1.15) is valid only for lowefield (<1G v/cm) in semiconductor. Above
this approximate values" becomes a function of E-field and is not a comiséany more. This is
referred to as the “hot carrier effect.” In thigjien drift velocity saturates to a value comparable

to the thermal velocity (Gm/s). This behavior is typical of Si and Ge, &ome
semiconductors like GaAs exhibit negative conduistiat high fields.
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1.5-Invariance of the Fermi level at equilibrium:

In the following chapters we will be considerirgges in which non-uniform doping in a
semiconductor or junctions occur between diffesamhiconductors or a semiconductor and a
metal. These cases are crucial to the various typelectronic opto electronic devices made in
semiconductors.

Analysis: For two materials in intimate contact (such tHat&on can move between the two)
there is no current and therefore no net chargmergy transport at thermal equilibrium. Since
there is no net energy transfer any transfer afteda from material 1, to material 2 must be
exactly balanced by the opposite transfer of ed&ctrom 2 to 1.

Calculations lead to (E) = f(E) --1.18a

There is no discontinuity in the equal Fermi lewghich means

dEf
“dx =0 (no gradient!) 1.18b

Conclusion:
Rule: No discontinuity or gradient can arise in the éguum Fermi level E.

Material 1 Matial 2
Semiconductor 1 Semiconductor 2
Semiconductor Metal
n-type semi conductor p-type semi conductor

{E) fo(E)
=] B

1.6- Fundamental Equations For Semiconductors



1.V.D =p(x,y,z) (electric Gauss' [aw ) ----------- —1.19

D
' D

=]

=¢E = electric displacement vector

=]

= electric field vector

d
2. VIcond=-0tp(X,y,2) (law of conservation of charge)

;

é}“’\f

-~

T cong= It is the conduction current density

3. Use equation 1.19 to obtain:

o

?_E =F

2 = : :
YV =-E (poisson’s equation) ----------------

dz 92 a2
V2=39x2 +9Y2 + 322

4. Current Density Equations:

J =g + gDy, Vn
jo= aMppe — gD, Vp
iond: jn + jp """"""" 1.22

5:] aﬂ.fat :g1_rn+a ?Jn



op 1
dt =g—-K-4 Y j,  continuity equation -------- 1.23

a d a
Note: 1.¥ =dx ¥ +d¥ Y +9z Z s the Del operator

_ dpx 9Dy apz
Equatior¥ .D = ax + dv + 8z (divergence) ¥V (gradient)

V.V =V 2=9%9x? + 0%/0y? + 0%/07* (laplacian) = Divergence of gradient.



1.7 SELECTED EXAMPLES

The following examples are selected from severaldis; therefore there may be some
notation differences which should be kept in mind.

CHAPTER 1 EXAMPLES

EX1) Chapter 1
A silicon sample is doped with 10As/cnr.
Find equilibrium hole concentrationg?
Where is Erelative to E?
Solution:
since Ny >> n = 1.5¢ 10 <& n, = Ny = 10"/cm?®

R = n%n, = 2.25¢ 10°

Ei — E = KT In (ny/n; )= 0.407 ev

y, S Ef"
- i ;.
g 0.407 eV
Vj-"—lev a [ e - 5,'
/ L
Ll 4

EX2) Find the resistivity of the intrinsic Ge at 3RQ
Solution: intrinsic materia® n, = p, = n = 2.5¢ 10~/cm®
From appendix 4& 3900 , and pi= 1900 crilv-s

Gi= q(n + o) = 2.3% 102 (Q cm)*



pi = 1/(Si = 43Q-cm



EX 3) Chapter 1: (given below)

Find the proper directions, signs for the currents. drift velocities, and mo-
bilities produced by the motion of both negatively and positively charged particles moving
in the same medium under the application of a constant external electric field &.

Solution. Consider a region of a medium where due to the application of a potential
difference v, an electric field & is produced. as shown in Fig. E.4.1. The conventional
electrical current flows from the positive toward the negative terminal.

From Fig. E4.1, &§ = &(—ay). where & = v/L and the corresponding velocities
are given by

| v_a, (electron)

E4.1
Vi = Vi(—ay) (holes) k )
where v_ and v . are the magnitudes of the respective velocity vectors. By definition, the
current density is given by(Eq.f-[s’q)Using g = —e for an electron and ¢ = +e¢ for a
singly charged positive charge, respective current densities are
J_ = —en_v_ = —en_(v_a,) (E.4.2a)
= en_V_(—ay) . (electrons)
Jy = ensvy = eni(—viay) (E.4.2b)
= eniVi(—ay) (positive charge)

We see that both current densities are in the same direction, and the total current density
is

J=J_+1]4 (E.4.3)
J=(en_v_ + enyvi)—ay)

J. given by Eq. E.4.3, has the right sign of the conventional electrical current. The drift
velocity is related to the electric field by

v=1u8 (E.4.4)

From Fig. E4.1, & = &(—a,) and from the comresponding velocities, the sign of
mobilities 1s

v_a, = p_Ep(—ay) P = —pg (electron) (E.4.5a)
.‘-"+EO(_ax) H+

vi(—ay) +up (positive charge) (E.4.5b)

Motion of negative and positive charges under the ap-
plication of an & field.

%

Similarly. the conductivity due to both charges is
oc=qg_n_p. T qginsfhe
= —enp(—Wa) tenpltpp) (E.4.6)

]

eNplhn T ENpllp

) Here n, and n, stand for the negative- and positi\'e-pmiclg densi‘[ies. The current
density and the conductivity of the sample arise from the contributions of the two charged
species, although the particles move in opposite directions.



EX4| cH |

carrying maximum available cugrent of 2.32 A (see the Radio
- el .
n = 8.5 x 10°? electron/em? in copper

(b) Find the transit time of the electrons if the length of the copper wire is 10 ¢m.

Solution.
= a
( ) i 2.32A & B A2
jzg_—.—l_———___zzl.%xw.%m'
i L0 10~3m,

L)

pi

Therefore, from J = nqv we find
2.95 x 105A/m>
_ v = - =217 % 10 *mss
16X 10719 C x 85 x [0Bm=3 e

(b) The transit time is
L 107 !m
b= —-=—_ __ - 460.8 <
14 217 X 10 4mys g

Note that light travels the same distance in 33 picoseconds. *
( C) The thermal velocity of electrons (rms velocity) is given by Vems = (3 £T/m) 12
Suppose that all the electrons In copper moved simultaneously in the same
direction at the thermal velocity. What current wi]] result in the s

[ 3138 x 10-2 7K~ y300 &) |1
_‘_-——___‘—.

| 9.1 x 10-3Tkg |

z

A7 % 10° mys

v

1
Note: E2 mV?

3
E2KT

/
Therefore V = (2E/m¥ = (3kt/m)?
The resulting current density will be:
& = gqNVms = 1.59 10" A/m?

l=jyA=1.25¢ 10 A quite high!

Current is high due to our assumption of all elmtsrmove simultaneously aty

velocity of electrons in copper wire of diameter |.( mm
Amateur Handbook). Assume



X 5

-~
-

™
AN
T

27, (!./a):_-,a; =

i i room
Calculate the intrinsic hole concentration of a germanium crystal at ro

temperature.

Solution. For simplicity, we

take m, = m:,', = m, (the free electron mass). The ba

gap energy of germanium is 0.67 eV.

_ IZTF

3

-23
1.38 x 1072 J'/K] (9.1 x 10731 kg)3]3“

T 662X 1073 -5 )

(0.67eV(1.6 x 10719 J/eV) ]

% (300 Ky exp| — 2 o 10D 0600 K) |

3
p =5.98 x 1022 holes/m® = 5.98 x 10'6 holes/cm

nd

NoT

In an intrinsic

=

semiconductor

n=p=n;

Thus, the intrinsic electron or hole concentrations are given by

Ll il PP (—Eg72kT)
n; =2 ﬁ—} (m,my)" T e

\

EX 6

cH. [

[ 4

Calculate the electro

donor-atom density is 5 x 106 cm

n density in an n-type silicon semiconductor, if the
~3. Assume that 90 percent of the donor atoms are

ionized. Also find the hole density in this n-type semiconductor,

Solution. For silicon n; = [.4 x {010 em ™3, We can therefore neglect n inﬁiq ‘,IZ.G.) |

n=nph =

From Eq.6.8, the hole density is

'- [N

P =

Note that the hole density in a
hole density.

0.9Np = 4.5 x 100 ¢ =3

= 4.36 % 10" holes/cm?

n n-type semiconductor falls way below the intrinsic

—
I




cH-/

£X 7

For Exam

le L f 2 .
donor level . p m nd the location of (4) the Fermi leve] Er

Solution. Using Eq. 1.9. we can write

.EF —_ E(_:
Ne ""Pf‘,—ﬁ) =np = 0.9n,

kT
Solving for Ep. and using Ne=2.5%10'% ¢ =3 eofikd
\ . ,
 0.9N

EF‘E( = kT In '—D:
Ne

2 .

1(0.9)5 x 1018
[EEE—— Er — E. = (0.026) In! Wi eV

Finally

Er = E. —0.164 eV

The Fermi level is O.*6~1 eV below the conduction band.

We Know a4
Nn= N 1
(D"Nd) np = Np 7

I +exp (EF — Ep)/

L

kT
Setting

nh = 0.9Np

Ep =E.—0.107 eV
The donor energy is 0.107 eV below the conduction band.

Note : N, = .= N, f(Ea) = ionized acceptor concentration
In general equation 1.11 for charge neutrality pee®

n+AN=p+N

D=ng =NplI-f(ep] = ion.'zwl Donyy' Conc.

and solving for Ep and using Eg = E. — 0.164 eV from the above solution,

and (b) the

*

we find

=/VVC KT

- (Er-£,/

/
+ ’VaI e (FA-E£VeT
€ J

+A I,,,. e??.r-n}/,(r]

=



x| ¢H !

Determine the probability that an energy level is occupied by an ¢lectron
al 30U°K if i is located above the Fermi level by
(a) 0.026 ¢V (=41,
(b) 0.078 eV (=347,
(¢) repeat parts (a) and (b) at 600°K.

Solution’
From Eq. ({2)
(a) B
; |
f(E):uula v = ?”T:——l = 0__2—2’
(b) —
s 1
JE)ows v = ‘m = 0.05. L

The latter result indicates that at room temperature, any energy level
only 0.078 eV above the Fermi energy level has a probability of 1 in 20
of being occupied. At the Fermi energy this probability of occupancy is
1in 2.

(¢) A1600°K, 0.026 eV = %kT and 0.078 eV = %kT. Hence at 600°K —
; |
J(E)hmzﬁ N = eI . — 0.38.

2 kT oo iont
f,llf Wy + 1 |

’ |
JE) g v = SR 1] = 0.1

go

Hence the occupation probability increases substantially with tempera-
ture increase.

EX 9

Intrinsic semiconductor material A has an energy gap of 0.36 eV, while
6#. ’ material B has an energy gap of 0.72 eV. Compare the intrinsic density
of carriers in these two semiconductor materials at 300°K. Assume that |

the effective masses of all the electrons and holes are equal to the free |
electron mass.

Solution

Using Eq. (IJO) we have
n ’ (-;—I-;u 24T
= = plea£eyi7
n, e Leg it

i

= e TZI-0.3060 eN0052 eV

1000.

Hence. although the energy gap of these two intrinsic semiconductors
differs only by a factor of 2, the intrinsic density of carriers in the nar-
rower gap material is 1000 times greater than that in the wider gap
semiconductor.

» » -



EX lo

C”' I.. Given the n-type semiconductor silicon at 300°K with an energy gap of

1.12 eV. The material contains only donor-type impurities. all of which
are ionized. The donor density is 1.0 x 10"/em”, Calculate the Fermi
energy.

Solution

Beginning with the charge neutrality condition given in Eq. (4.34), since

MO acceptors are present and all donors are ionized. n, = ( and N, — p,
= 0. This equation then reduces to

p+ N, =n

Since the np produet for silicon is (1.5 x 10')*/cm® and there must”

be at least 10'¢/cm? electrons in conduction. the hole concentration must
be less than [(1.5 x 10")/10"*)/cm®. Hence P < n N, So to a good |
approximation i

No=n

or essentially all the conduction electrons come from ionized donors, |
Using Eq. (4.21a) we have 3 —

|
!

Ny = M, X 220mkT k) et Eruar ”
6(4.82 x ]O'5)(m,,*/m0)3'3T3’3€“£f’E”"‘T. =\o

=" Er—E": -02] ey

- L4




CHAPTER 2 — Excess Cars in Semiconductor

2.1- Diffusion: When excessive carriers create non-uniformly semiconductor, the electrons
and holes concentrations vary with position inghmple. Any such spatial variation (gradient)
in “n” and “p” calls for a net motion of the camgefrom region of high concentration to region
of low concentration. This type of motion is cal@iffusion and represents an important charge
transport process in semiconductor.

Observation: The diffusion is the natural result of the randmmtion of the individual charge
carriers due to the thermal energy present.

nix)

Ex: Spreading of a pulse of electrons by diffusion.

Observation: The current flow is proportional to the gradieatrkase (or slope) of the
concentration, thus

(i])diff =q D, dn/dx
()it = - Dy dp/dx

Note: Electrons and holes diffusing in the same directcauses opposite currents.
2.2- Drift and diffusion of carriers:

The two basic processes of current conduction are
1. Diffusion due to a carrier gradient.
2. Drift due to an electric field.

Therefore: KX) = gpen(X)e(x) + gD dn(x)/d(x)  --mmmmmmmmemee- 2.2a



Drift Diffusion

00 = AWPOE() — ADAP(YA() e 2.2

The total current density is

J&n(X) + jp(X)
JER(N(X) + Wp(x))e(x) + q(Dndn(x)/d(x) - Ddp(x)/d(x) )

P, (diff)
L - /4
&) Jp (diff)

P (Lt )
—hw) s T (drift
Pex ) \ Py (dig)

e o J"n (ddg)
o (il R o —

: ) Jn(dnr('t
‘__— )

Observation:
Minority carriers can contribute significantly tioet current through diffusion (for a significant
gradient, dk/ dx or dp/dx ), since drift term i®portional to n or p and is thus small.

2.2.1- Influence of E-field on energy bands:
Observation: Since the electron drift in a direction opposdéfte field, the band energy for
electrons should increase in the direction of telel f However the electrostatic potential
function varies in the opposite direction because:

e(X) = - dv(x)/d(x) = - d/dx(E-q)

&(x) = 1/q.dE/dx




Note: E; is chosen as a convenient reference to calculgdesihce we are interested only in
spatial variation of V(x).

Point of interest:

To remember the slope, we know that the diagraticates electron energies and the slope
should be such that electrons drift “downhill” hetfield when E points * uphill” in the band
diagram.

2.2.2- Equilibrium:
Definiton:
1. Equilibrium refers to a condition of no external excitationeptcfor temperature and no net
motion of charge l.e. a sample at cont temp, irddo& and no fields applied on other hand.
2. Steady stateRefers to a non-equilibrium condition in which ptbcesses are constant and
are balanced by opposing processes e.g. A samffle@wbnstant current or a constant
generation of EHP's balanced by recombination @letransients have expired!) any
equilibrium is at steady state but not vice versa.
For a semiconductor at equilibrium no net currémws.

JIn(x)=0, Jp(X)=05 -dv/dx
From 2.2a

gpno(X)e(X) + gD dny(X)/d(X) =0 ----m-mmmmmmmmeee- 2.5
e Nce—(Ec—Ef)/kt

dydx = -1/kt . N.(dEc/dx — diZdx) e EEM = (q/kt)(dv/dx)
Substitute and simplify:
Thus Eq 2.5 D/p = kt/q =0.026 v for t=300K  ------------—- 2.6 (Einstein relation)

Observation: Eq (2.6) allows calculating either “D” or “u” from measurement of the other. If
applies to “n” or “p” type.

2.3- Continuity equations

Continuity equations:

ON/ot = Gyrnt1/Q .0J/OX e (2.7a)

oplot = Qrpt1/Q .0FJOX oo, (2.7b)



Ongp = electrons and holes generation rate’(smc) Caused by external influence such as
optical excitation.

I, = electron recombination rate in p-type semiconductater low-level injection (i.eAp<<p,
for majority carriers)

Then b= NyNpo/Tn = N0 e, (2.8a)
Where n = majoritycarrier density
Npo = thermal equilibrium minority density.

T = Minority carriers life time.

Similarly, ’
Mo = PrPnd/Tp= P/Tp ceveeee i (2.8b)

Note: If electrons and holes are generated and recomhlimngairs with no trappings thep= 1,

Definition: Minority carrier Life time :

It is a decay constant (A8 and indicates the average time interval betwherrtroduction and
recombination of minority carriers.

Fact: Continuity equations are derived from Maxwell’siatjon:

v J = dplot (i.e. conservation of charge)

1
Eq: djl ox =-0/0t(-qn)*+q(rm-gn) =» dn/ot = g1-rn+(3 0dj/ 0x)

2.4- Non-Equilibrium carrier concentrations:

Consider an extrinsic s/c (n-type) optically ezdito generate EHP’s by photons with sufficient
energy (hf Eg). This creates an equal number of conduction restand valence holes, similar

to thermal excitation of electrons.



Total combinations are:
n=#n and p=p+p’
Example 1: Decay of Photo excited carriers

Assume the illumination has been at steady statatlig0, it is removed. EHPS are generated
uniformly throughout the sample with a generatiate ry. show the variation of with time.

Solve: Prior to t=0(i.e. at t=0 E=0;
Boundary conditions (B.C) are : opn/ox = 0 Uniform generation;

opn/ot = 0 Steady State

2 hT>E9

l;-‘ty'Pc
v L 3

'S

Therefore, Cont. Eqn. =8py/ot = g-( b -Pno/ Tp) => h =Pno +g 1 = CONSL.
n(P)= Patg tp
At t=0" Boundary conditions ar
Ri(t)/t—e = Pro
Cont. Eqn. =>0p,/ot = (P -Pno/ 1p)
Po(t) = pottp0e’ 1,  (satisfies B.C.) (2.9)

Excess carrier =4Rt) = pr- pno= Ipge’ I



Rl NN
) "l!"p :_

Note: According to Stevenson keys method, this can bd ts measure minority carrier lifetime

(tp)

A possible setup is as follows:

If a uniform light pulse is shined for a short tintkke EHP generation causes an increasein
increase in 1. When the pulse is gone the decalyistonductivity is a measure gfThe only
condition is that the pulse width<g.

Example 2 Steady state injection from one side:

Consider the figure below where excess carriersnggeted from one side so that EHPs are
generated at the surface only. Find the minorityieadistribution as a function of X.

a) Let w—oo

B.C p(x=0)=const. = g0)



_I.
[
Y

R(X=0)= Pho

Continuity eqn:opn/ot =-pn -pno/ tp-1/q 0j/0OX)

Current density equation (Eq: 2.2ky)=j quppe - qD,0p/ox

Talr)

> (P Pro)/ 1p + Dp (8% p/dx?) = 0 (2.10)
> Pu(X)= Phot] Pa(0)- Prcle™*® (2.11)
Where L=\D, 1, is the diffusion length

RX) = Pa(X)-Pro = [ pn(0)- pnale™*® (2.12)

b) W is finite and it Extract all excess carriers at\X
B.C R(O) = const.
RW)= Pho
Eq. (2.10) :>p(x)=pno+[pn(0)-pm£ sinh(w-x/Lpbsinﬂ(w/Lp) (2.13)
Current density extracted at X=W is

3,()=-GDP@EP/X) = A[pr(0)- prdl (Dy/Lp)[ SinhWIL)]  at x=w (2.14)



Note: Eq (2.14) can be shown to be related to the basert in an npn bipolar junction
transistor.

4‘ 2l exeas Gmis
L i S Eow, N,
mt Sa.w.'p!, /e,.q}f' | o
7 s =
LY S :
(o] W X

Silicon resistivity: (n type and p type)

10?

10"

p Resistivity (ohm cm)
-
L]

1073

gl v panal o G iorsid a1 )
‘D“ TR TTTY AW T ol L Ll
10" 10'® 10" 10" 10" 10" 10%® 107

Imputity concentration (cm ™)



2.5 The Hall Effect

The Hall Effect is based on the force exerted amoaing charge as it passes through a magnetic field
It is an important research for determining theieatype(é or hY),concentration (n,p) and mobility {u

. Hp) for the majority carriers in the semiconductor.

Gwmjrj for Max.
Hall effed —7 <
{ 1
ASSume ; ;-—typc Sle
_ i)
I = ; dir
T=7A=zCEXA=>
I Wt) Gnhn) & => Ex-T/wtgns, & )

| A A 5 A :
F-9vxg => F=(+Vxx) X (822) e=F K BzI=- FUnELBz Y (8“*9 '

% ] A” < v L u ”

.
.S -

5w Chorge on 7R —yside Gie. ¢ defiCiency)

At Stﬁa‘dj slal , &n f,/u;'/ﬁlt 74-'(//6/ £y Qun—(:ra&ﬁ' 2 fore duel 8.

+$6y -9 4, £ B m(‘gmo) o I8,
g X Dy —_ EJ = -—__—Wf Y (Y- ‘r?.)
Vig e+ EW= T82 - induc) all yphag,  43)
__and =t & i (3

The Sign sf Ui Voltage LTicoies e ugpoity Gumiee byge!

a. The magnitude of ¢\ determines the majority carrier concentrationf@n}he s/c.
b. If a measurement of resistance (R) is mad@n be calculated :
R =pL/wt =>p=Rwt/L =>(Vcp/l,)/(L/wt) (8.44)

c. Findingp allows mobility to be found next as :



o = gnh => P =o/gn =>(1p)/gn =>1pgn (8.45)

Note 1:

If p-type material is used,”s are deflected toward the same side (i.e.”-YHsiH’s flow opposite
to €'s. Therefore Y, is negative for p-type material but has the saonm fas eqn. (8.43).

Note 2:

Hall coefficient is defined to be:

Ry=1/gn (8.46)
Therefore, eq 8.42 =3=Ry k& B, (8.47)
Eq 8.45 => 4R/ p (8.48)
& n=1/q Ry = (j* B, Yae, = (Ik/wt) B, /q(Vas/w) => n=1, B,/qtVag (8.49)

2.6 Haynes-Shockley Experiment

When localized light pulses generate excess caiirniex s/c (as shown below), the continuity eqteraf
the pulse (g=0) is given by

PULSE
GENERATOR
(%)

I
|
—_—

Eqg. (2.7a) gives

oplot = g, - rp,-1/9(0) o/ 0X) (2.15)
5= Pn -Pro/ Tp (2.16)

j;=auope-qD,OPIoX =>6)JOX = quedp/ox- gD ploxX’

eq (2.15) =>0plét = - p, Pro/ T - Hpedpy/OX + Dpd* py 10X (2.17)



a) Case 1:(E=0)

No E-Field is applied i.es= 0

Soln. to Eqn. (2.17) is a “Gaussian Distribution”;

At t=0" pulse is removed and the excess carriers diffuse as
Pa(X,t) = Py + AP/(2V[ID,t) . b &40t (2.18)

Where Ap is excess holes at t=0(per unit area) over al slisédnce §x)

-p__)zh-n
Ry Pra!* " Mo

Note: The exponential factor predicts the spread ofeirighe positive and negative X directions.

Check:

f-Ro
(-t. ¢
°
A ] J t

t=0; B- Po = Ap/ox

t=o; Py- Po=0

x=0; P- Pro=Ap/(2V[D;t)
xz0; Py- Pyo =0

Case 2 (e #£0)

An electric- field € or E) is applied along the sample; the solutithe same as eq. (2.18) except
“x” should be replaced with “x- jat”.

Thus the whole package of excess carriers movear tlshe negative end of the sample with the
drift velocity “ppe”.



At the same time, the carriers diffuse outward rrmmbine as in the field-free<0) case.
Pu(X,t)=PaotAP/(2NT[D,t) . €*2/4PH1P)

Xo= Hpet.

In this case,pPcan be calculated from a simple measurement Esvisl
At t=ty, X=xg+Ax/2, (%= Hpety)

Use case 2 results (point A):

Ul Cads T results (PTA):

<! A -(/+_-x
¢ Bpsaper ® M/ny
-l - (AX
g g AAP # )A
1
='->Dp: .@-Q
1€ty

SinceAx can not be measured directly, an experimentapgghown next) is used to display the
pulse of x=x on an oscilloscope as the carriers pass undeteatde We measure\t” and then

relate it toAX:

AX=V 4At = X4At/ty



Let L=x4= length between probes.
Therefore, RQ=(AX)*/164 =( AtL/ ty)%/164

D, = (AtL)%/16t

Also p, can be found :
Vg =Ly

= Ve  E=Eo/Lo)
=L Lo Eoty

2.7 “Four point” Probe method

This is the most common method for measuripig & small current from a const current source is
passed through the outer two probes. For a thiemeith thickness “w” much smaller than other
dimensions (s or d), the sheet resistance canlb@aizd.



*
Measure i_
voitage R Vg i v,
across v _
resistor .
ort laye¥
R A NN
F-S—w—s‘-r*—S. 5t
' o Frgt Firgr H
WL 4 e
' S _/
>

ity using the

up to measure sample resist

Figure 3-14. Expenmental set-
four-point probe technigque.

Sheet Resistance concept

R=pa/wd

For a square,a=d and R=R

Rs=p/w (known by measurement)

Rs=(V/l) CF

Thereforep =w Ry

Where CF=The collection factor is shown below.

Ss P’OL e
Spating



Special caseln the limit when d>>s =>CFR#In2 = 4.54

ﬁs-'-Y—CF (£1 /SQUARE)
PrRgW  (fi-cm) ]

CORRECTION FACTOR

EXAMPLES :

Ex 11 A)

A Sample of Si is doped with ¥0phosphorous atoms/énWhat would you expect to measure for its
resistivity? What Hall voltage would you expectisample 100um thick iH1mA and



B,= 1kg=10°wb/cnt.

Solution:
From Fig 3-2.3, the mobility is 7008&ftV-s). Thus the conductivity is
6= Qo = (1.6X  10™9)(700)(16") =11.20Q-cm)*
Since pis negligible. The resistivity is

p=0c"=0.089%-cm
The Hall coefficient is

Ry = -(qny)™ = -62.5¢ni/C
From Eq (3-49), or we could use Eq (3.53). Thévdtage is
Vag = kB, * Ry/t = (10°A)(10°wb/cnf)*(-62.5 cnf/C)/102

=-62.5uv

Ex 11 B)

The p-type base region of the n-p-n bipolar silit@msistor has a width of 2010%cm and is doped
with 1.0% 10" acceptors/ci Electrons are injected into this region from émeitter at xproducing a
uniform gradient of electrons there with the alectconcentration dropping to zero at the colleatog.

If 2.0% 10*electrons/crhare present at the emitter edge of the base régihr(a) calculate the diffusion
current density of electrons through this baseoregnder steady state conditions (b) What elefitrid
must be present in this base region to yield actrele drift current density exactly equal to théudiion
current density just calculated? (c) Determinevibleage drop across this base width corresponiding
this field.

Solution: (a) From Appendix, j& 1500cri/v-sec, and from the Einstein relation,=0.026V")(1500
cnt/V-sec) or =39 cnf/sec. From Eqn (2.1)

(\]n)diffusion =q Dn dn/dx
= (1.6¢ 10"°C)(39 cnilsec) (2.&¢ 10/2.0% 10%)cm™*

=6.2 Alcni

(b) from Eq (2.3)
(Harit = qNhe (use average electron density);

6.2 Alcnf = (1.6% 10™°C)(1.0% 10*cm™)(1500 cni/v-sec)¢ V/em)



g= 2.6% 10°v/cm.

(c) Voltage drop: VeW = (2.6¢ 10°)(2.0% 10%) = 5.2¢ 10?V.

Ex 12) A bar of n-type silicon at 300k contain® 8.0*°> donor impurity atoms /cfrand exhibits a
minority hole life time of 1 pus. The sample isitiinated with light of wave length= 8000A. Which

introduces 1.8 10™ excess electron-hole pairsftm

(a) Prove that this illumination will excite electromil pair in the sample.
(b) How long after the light is shut off will it takeif the excess hole density to fall to 10% of its
initial value.

Solution: E=hf, f=CA ; E=Photon Energy.

(a) The photon energy fée= 8000< 10° cm is E Py

= (6.63% 10™J-sec)(¥ 10"%cm/sec)/8008 10%m
=2.5% 10 or 2.3 10%%/1.6% 10'°%/ev = 1.55eV.

Since this photon energy exceeds the silicon gdphvaf 1.12eV. Electron-hole pairs will be excited
across the gap.

(b) Ap =Ap,e™ or t= -r In Ap/Apy)
= -(1.0% 10°sec)In(0.10) and t=2.3usec for the excess holeitge¢ngeduce to 10% of its
original  value.

Ex 13 A)

Let us assume a sample of GaAs is doped withak@eptors/cr The intrinsic carrier concentrations of
GaAs is app. 1%@m?; Thus the minority electron concentration ism’/p, = 10%m?®. Certainly the
approximation g>>n, is valid in this case. Now if tDEHP/cn? are created at t=0, we can calculate the
decay of these carriers in time. The approximadior<p, is reasonable, as fig 4-7 indicates. The fig
shows the decay in time of the excess populationa tarrier recombination life time of,= 1, = 10°.
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Decay of excess
electrons and holes
by recombination,
for An = Ap
= 0.1p,, with n,
negligible, and
=10 ns
(Example 4-2). The
102 ! L I ‘ exponential decay
0 10 20 30 40 50  of 8n(t) is linear on
this semi-
1 (ns) logarithmic graph.
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There is a large percentage change in the mincaiter electron concentration in this example and
small percentage change in the majority hole canaton. Basically, the approximations of extrinsic

material and low-level injection allow us to remesn(t) in Eq (2.7) by the excess concentratieff)
and p(t) by the equilibrium valug.p

Note: n (+) = n+d,(t)

Therefored,(t)= n(t) excess carrier.



