
Part 1: Introduction to Crystal Properties 
Semiconductors 

- Solid materials 
- Semiconductor Latices 

      -     Miller Indices 

1.1 INTRODUCTION TO CRYSTAL PROPERTIES 

 In studying solid state electronic devices, we are interested in the electrical behavior of solids. 
Charge transport depends on:  

                      a) Properties of electrons (e-) 

                      b) Arrangement of atoms in the solid 

 

 

 

  Some basic properties of semiconductors compared with other solids are presented in this 
section. This section also covers crystal structures of semiconductor as well as types of 
semiconductors.  

Solid state materials are divided into: 

             a) Insulators 

             b) Semiconductors 

             c) Metals 

Semiconductors are a group of materials with conductivity which lie between insulators and 
metals. 



                                    Insulators ( 10-8  ) <  σ < metals(103) 

                                                                                                                                    where  σ = electrical conductivity 

 

 

 

 

                                                         SEMICONDUCTORS 

Semiconductors are divided into two types: 

           a) Elemental: Made up of single species of atoms. e.g. Si,Ge ( column IV of the periodic 
table) 

                                            

          b) Inter metallic or compound: Made up of atoms belonging to column III & V and II & 
VI 



                                                      + 

       

                                                                      Periodic Table 

            II             III             IV              V               VI 

            Zn               B               C              P                 S 

            Cd               Al              Si              As                 Se 

                          Ga              Ge               Sb                 Te 

               In    

 

 

             Elemental           IV compound         III-V compound        II-IV compound 
                  Si                 Si C               Ga As                Cd Te 
                  C                 Si Ge                Ga P               Cd Se 
                 In As                Zn S 
                 In P                Zn Se 
                 Al As                Zn Te 
                 Al P                Cd S 
 

Applications: 

 a) Ge: Was popular for x tors and diodes in earlier days 

 b) Si: Is now used for x tors, diodes and ICs 

 c) Compound semiconductors: Are widely used in high speed devices and devices requiring    

    emission or absorption of light. 

               Examples: 1) Ga As -(binary III-V) used in microwave IC (MMIC) 

                                 2) Ga As,Ga P – used in LEDs, photonic devices        



                                  3) Ga As(ternary compound) and In Ga As p (quaternary 
compound) 

                                       these add extra flexibility 

                                   4) Zn S(binary II-VI) -used in TV screens  

                    5) Pb Te,Hg Cd Te,In Sb,Cd Se: Used in light detectors 

                    6) Si&Ge: Used in Infra-red and nuclear radiator detectors  

                    7) Ga As,In P: Used in microwave devices e.g. Gunn diode 

                    8) Ga As,Al Ga As: Used in semiconductor lasers 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

SOLID MATERIALS 

  Solid materials classified by atomic arrangement: 

1) Crystalline Solid or Crystal: 

 Atoms making up the crystal are arranged in a periodic fashion. 

 

The periodic arrangement of atoms in a crystal is called the “ lattice “. 

A “unit cell”  is a volume which is representative of the entire lattice and is regularly 
repeated throughout the crystal. 

                      Example: Lam-grown silicon 

2) Polycrystalline Solid: Is composed of many small regions of single crystal material.                                    
                      Example: Randomly cooled purified Si or Ge. 



 

3) Amorphous Solid: Is composed of atoms having no periodic structure at all. It has no 
lattice. 

             Example: SiO2 (glass). 

 

 

 

Some Basic Unit Cells 

 

1) Simple cubic crystal (SSC) 
         

            a = Lattice Constant (in cubic unit cells )   

Ex: Polonium 

             Number of atoms=1/unit cell 

             Each atom has six nearest neighbors.    

     



 

2) Body-Centered Cubic Crystal (BCC): 
         Ex: Sodium, Tungsten 

                        Number of atoms=2/unit cell 

 Each atom has eight nearest neighbors (eight corners of cube) 

3)  Face-Centered Cubic Crystal (FCC): 
        It has one atom at each of the six cubic faces in addition to the eight corners of atom. 

                                 Number of atoms=1(cubic)+3(faces)=4/unit cell 

 Each atom has 12 nearest neighbors. 

Why? -Each face centered atom has 4 neighbors at the corners. 



                

  Each face centered atom has 4 face centered nearest neighbors at the top half.         

  Each face atom has 4 face centered nearest neighbors at the bottom half.  

                                  b =  

Ex: Al,Cu,Pt,Au 

 

Semiconductor Lattices 

 

1) The elemental semiconductor (Si & Ge) has a diamond lattice structure. This structure 
also belongs to the cubic crystal family and can be seen as “two inter penetrating FCC 
sub lattices” displaced from each other (a/4,a/4,a/4) .i.e. a displacement of  a�3 /4  . 
(diagonal of the cube = a�3 ). 

          A 2-Dimensional view is shown above. 

 Each atom is surrounded by 4 equidistant nearest neighbors that lie at the corners of a   

Tetrahedron (a solid figure with 4 faces) forming a pyramid (i.e. all sides equal). 

 



 

2) Zinc Blend Lattice:   
 Most of the III-Vth compound semiconductors (e.g. As.Etc) have a Zincblende lattice 
which is    identical to a diamond lattice except that one FCC sub lattice has column III 
atoms (Ga) and the other has column V atoms (As)  

 

A  2-Dimension view is shown above. 

 

The 4 nearest neighboring atoms would lie at the corner of a tetrahedron with Ga & As. 
Each having different atomic radii. 



                                                          

 

 

 

 

 

 

 

 

 

 

Miller Indices 

 Crystal properties are different along different planes, thus electrical and other devices 
characteristics are dependent on xtal orientation. A convenient method of defining the various 
planes in an xtal is to use “miller indices” which are obtained using the following steps: 

1. Find the intercepts of the plane on the three Cartesian coordinates in terms of lattice 
constant (a) 

2. Take the reciprocal of these numbers (this avoids infinity ∞ ) 
3. Reduce numbers (of step 2) to the smallest 3 integers having the same ratio. 

                



                        ABC = Unit Plane 

                        HKL = a xtal plane  

 

 

                 (
OA
OH ,

OB
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,
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OL ) �(h,k,l) 

 

             Ex:  1) Intercepts OH = 2a 

                                              OK = 4a 

                                              OL = a 

 

 ,  , 1)         (reciprocal) 

 

         3) (2, 1, 4) (multiply by 4)  ==>miller indices = (2,1,4) 

              This is (2 1 4) plane! 

Note 1: Each set of numbers define a set of parallel planes in the lattice. 

Note 2: If a plane passes through the origin, it can be translated to a parallel position for 
calculation of miller indices. 



Note 3: If an intercept occur on the negative part of an axis, the minus sign is placed above the 
index I.e. (h k l) 

Note 4: For equivalent planes use {h k l} 

             Ex : {100}= (100),(010),(001),(T00),(0T0)&(00T) 

Note 5: For a direction in a lattice a set of three integers expressed as the multiplies of lattice 
const. is used : [ h k l ] 

Note 6: For a full set of equivalent direction use < h k l > 

             Ex: <100> = [100],[010],[001],[100],[010]&[001] 

 

 

 

 

Note : dir.[hkl] is perpendicular to plane (hkl) --->true in cubic system! 

 

 

 

 

 



    PART 2 

Energy bands and charge carriers: Basic Principles 

 

 

Chapter 1: Energy bands and charge carriers 

Chapter 2: Excess carriers in semiconductor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: Energy Bands and Charge Carriers 

 A specific mechanism by which electric current flows in a solid is examined. We shall learn 
about good and poor conductors of electric current as well as examining what makes these 
conductors good or bad. We will also study variation of semiconductor conductivity by changing 
the temperature or the number of impurities. 

1.1 – Bonding forces and energy bands 

we will discuss bonding forces and energy bands  

             Interaction of electrons (e-) in neighboringin this section. 

1.1.1 Bonding forces 

 atoms of a solid holds the crystal together. There are three types of atomic interaction in a solid 
which leads to three types of bonding in crystals: 

a. Ionic Bonding: The crystal is made up of ions with the electronic structure of inert atoms, 
but the ions have net electric charges after electron exchange. 

 

                              

                 Note: All electrons are tightly bound to atoms .No free electronics .i.e. good 
insulators. 

 

     b.  Metallic Bonding: In a metal, the outer electronic shell is only partially filled (usually  

         less than or equal to 3e-). These electrons are loosely bound and is given up easily to the 
crystal as 

         a whole, so that the solid is made up of ions with closed shells immersed in a sea of free 
electrons. 

         These electrons are free to move about the lattice under an E-field influence. 

                                            E.g. Na metal 



 

 

 

 

 

                      

 

                                                        Na metal 

c. Covalent Bonding: In this type of atomic interactions each atom shared its valence 
electrons with its four neighbors. Each electron-pair constitute a covalent bond. 

           E.g. Ge,Si,C { column IV } 

                                            



 

   

Shared electrons are tightly bound to the lattice (except at T=0ok) and can be thermally or 
optically excited out of a covalent bond and thereby becoming free and increasing 
conductivity (semiconductors). 

 

1.1.2 Energy Bands 

 FACT : Electrons in an atom are restricted to sets of discrete energy levels. Large gaps exist in 
the energy scale in which no energy states are available. 

                           As isolated atoms are brought together to form a solid, various atomic 
interactions ( 3 types of bonding ) occur between neighboring atoms. The forces of attractions 
and repulsion between atoms will find a balance at the proper inter-atomic spacing for the 
crystal. 

 Similarity : Electrons in solids are restricted to certain energies and are not allowed at other 
energies. 

 Difference: Electrons in a solid have a range or band of available energies and are not at 
discrete energy levels of an atom. In a solid the discrete energy levels of isolated atoms spread 
into band of energies. These bands form practically continuous levels of energies. 

Reason for band of energies: Because in the solid the wave function of electrons in neighboring 
atoms overlap and an electron is not necessarily localized at a particular atom, i.e. Electrons are 
shared between atoms and are mobile. 

Note: According to Quantum Theory, an electron can be considered a wave as well as a particle. 
Wave function of an electron is the amplitude and phase of its motion as a wave.                                                                                                                 

                                                 E.g.     ψ = a cos(wt-kt) 



                                                        

 

 

Conclusion: Influence of neighboring atoms on the energy levels of a particular atom causes the 
shifting and splitting of energy states into energy bands.  E.g. Carbon atom ( 1s2 2s2 2p2 ) 

 

 

 

 

Note: As the distance between atoms approached the equilibrium inter-atomic spacing, this band 
splits into two bands separated by an energy gap( Eg ) 



 

 

Electron count:                      1s band: 2N e- 

                                         valence band: 4Ne-  ( at 0o K ) 

                                   Conduction band: 0 

   

                                    

 

1.2 Charge Carriers in Semiconductors 

 1.2.1 – Metals, Semiconductors , Insulators-Energy bands observation:                                                                          

              Every solid has its own characteristic energy band structure. This variation in band 
structure causes different electrical properties. 

FACT:  Electric current flow in solid under an applied E-field depends on free electrons ability 
to move into new energy states. I.e. There must be empty allowed states available to the electron. 

 



 

 

Observation: At room temperature, a semiconductor with 1ev band gap will have a large 
number of electrons in conduction band due to thermal excitation, unlike an insulator. 

 1.2.2- Electrons and Holes: 

 Observation: As the temperature of a semiconductor is raised above 0o k , some electrons in the 
valence receive enough thermal energy to be excited across the band gap to the conduction band. 

                           Convention:           electron =  e- 

                                                             hole =  h+ 

   

                                                 

                                       Electron hole pair 

EHP is equivalent to a broken bond! 

  Upon on generation of EHP, an electron in the conduction band is surrounded by a large 
number of unoccupied states. Similarly, holes in the valiancy band contribute to charge transport 



by allowing other electrons to hop around by occupying the hole. Thus allowing the hole to 
move around. 

 

                        

               

 

 

1.2.3- Concept of Effective Mass: 

Observation:  Electrons in a crystal are not completely free but instead interact with the periodic 
lattice, thus their motion cannot be expected to be the same as for electrons in free space. 

Effective mass: In applying equations of electrodynamics (science of electricity in motion and 
interaction with magnetic fields), an altered value of particle mass is used, to account for most of 
the lattice influence. This we call Effective mass (m*). 

Conclusion: Using effective mass(m*), electrons and holes can be treated as almost free carriers 
in most computations. 

  Example:             for Si                                            Ga As                                       Ge 



                           mn
* = 1.1 mo                                                        0.067mo                                 0.55mo 

                           mp
* = 0.56 mo                                                    0.48mo                                   0.37mo 

                                                                            mo = free electron rest mass. 

1.2.4- Intrinsic Semiconductors: 

Intrinsic semiconductors: Is a crystal with no impurities or lattice defects. At 0o k , there are no 
free electrons in conduction band and valence band is filled with electrons. 

 

 

Observation: At higher temperatures EHP are generated as valence band electrons are excited 
thermally across the band gap to the conduction band. These EHPs are the only charge carries in 
intrinsic material. 

                              

Visualization: Generation of EHPs corresponds to the breaking of covalent bonds. The energy to 
break the bond is the band gap energy Eg. 



                            

Observation: Since the electrons and holes are created in pairs the conduction band electrons 
concentration (n e-/cm3) is equal to the concentration of holes in the valence band (p h+/cm3), 
thus                

                                          n=p=ni    for intrinsic semiconductor 

New Terms:  

1. Generation: Is the creation of an EHP ( gi EHP/ cm3-s) 

2. Recombination: Occurs when an electron in the conduction band makes a transition 
to an empty state (hole) in the valence band.(ri=recombination rate EHP/cm3-) 

Observation: For an equilibrium carrier concentration, there must be recombination of EHPs at 
the same rate at which they are generated. I.e. ri=gi, at equilibrium ri and gi are temperature 
dependent and are proportional to the equilibrium concentration of electrons and holes. 

                                     Ri = αr no p0 = αr ni
2 = gi      at any temperature (T) 

                                            Where αr = proportionality constant 

                                                            

1.2.5 Extrinsic Semiconductor: 

New Term: 

1. Doping: Is the process of adding the controlled amounts of impurities to a 
semiconductor crystal in order to control its resistivity. 



Definition:  When a crystal is doped such that is the equal carrier concentration no
 
 and po are 

different from intrinsic concentration( ni ) ,The material is said to be Extrinsic . There are two 
types of Extrinsic semiconductors, n-type( charge carrier = e- majority ),and  p-type( charge 
carrier = h+ majority ) 

In Short:    n-type semiconductor: no >> po, ni 

                                p-type semiconductor : po >> no , ni 

                                                      

 

Band Theory: When impurities or lattice defects are introduced into an intrinsic semiconductor, 
additional levels are created in the energy band structure, usually within band gap.  

  

 

      

 

Impurity: column III ( B,Al,Ga,In) � p-type 

 



 

       

 

 

 

 

 

Corresponding covalent bonding model of a semiconductor: 

                   

 

1.3. Carrier Concentration: 

The purpose of this section is to obtain equations for carrier concentration, while understanding 
the distribution of carriers over the available energy states. 

Fact: Due to the nature and randomness of motion of electrons the distribution of carriers are 
meaningful only by a statically method called Fermi-Dirac statics which takes into account the 
indistinguishable nature of electrons, their wave nature and the Pauli Exclusion Principle. 



1.3.1 Fermi-Dirac distribution 

Fermi-Dirac distribution function:  Is a statistical function which gives the probability that an 
available energy states will be occupied by an electron at an absolute temperature T (ko) 

                                      f(E) = 1 / ( 1+e(E – Ef )/ kt  )     

Where k = Boltzmann constant 

  Ef = Fermi level (very importance reference point) 

Observations: 

                        f(E) = 
1
2            

                        E = 0 �  f(0) ≈ 1                              ,   E = ∞  �  f(∞) = 0 

                         T= 0 �  f(E<Ef) =1/(1+e -α) =1      ,   E<Ef 

                          T=0 �  f( E>Ef) = 1/(1+eα)                   ,      E>Ef
               

                          T=o � f(E) = 1/(1+e0) =                                                                                 

 

Observation: Plot of f(E) as the probability of occupancy of an available state at E is  in the 
band gap. There is no available state and no electrons. 

 

 

 Mathematically symmetry can be shown: 

                     f( Ef + ∆E) = 1 – f(Ef - ∆E) 



Position of Ef for semiconductor: 

 

 

Common practice: Is not to draw f(E) vs. E on every energy band diagram but merely to 
indicate the position of Ef in the band diagram. 

1.3.2 Electron and hole concentration at equilibrium 

                Using f(E) , no and po can be found 

                            no =       ---------------------------equation 1.3 

                            po =   ------------------------equation 1.4 

where n(E)dE is the density of states in the energy range dE. 

Fact: It is shown mathematically that N(E) is α   on one hand f(E) decreases very rapidly for 
higher energies. As a result f(E)N(E) decreases above Ec for no and [ 1- f(E) ]N(E) decreases 
below Ev for po  



 

          

 

 

 



Simplification: 

Electron Concentration:  If we represent all of the distributed electrons states in the conduction 
band by an effective density of state (Nc) located at Ec. 

                      then  no = Nc f(Ec) 

                  where  f(Ec) = e –(Ec-Ef)/kt            for (Ec-Ef)/kt >>1 

                                Nc = 2(2∏mn
*kt/h2)3/2 

    Thus:      no = Nc e
-(Ec-Ef)/kt                 ------------------------------------ equation 1.5 

                                 

 

Similarly for hole concentration :               

 Po = Nv [1-f(Ev)] 

Where     1-f(Ev) = e –(Ef-Ev)/kt                     for   |(Ev –Ef )/kt| 

                                                               Nv = 2(2∏mp
*kt/h2)3/2 

       Thus:      Po = Nv e
 –(Ef-Ev)/kt                ----------------------------------------equation 1.6      

Observation:  The two equations above (1.5 and 1.6) are valid for intrinsic or doped materials at 
thermal equilibrium. They are general equations for carrier concentrations. 

1.3.3 Further Semiconductor Mathematics 

For intrinsic semiconductor :  Ef = Ei ( middle of the band gap approximately  since density of 
states in conduction band and valence band are not equal Ef is not exactly at the center of band 
gap ) 

Intrinsic:            ni = Nc e –(Ec – Ei)/kt 

                           Pi = Nv e
 –(Ef-Ei)/kt                                                                                                  

                                                    Then we get    ni pi  = Nc Nv e –Eg/kt 



                                                                                                                                                                               Note: Ec – Ev = Eg  

Doped: 

                            no = Nc e
-(Ec-Ef)/kt      

                           Po = Nv e
 –(Ef-Ev)/kt                                 

                                                      Then we get no po =  Nc Nv e –Eg/kt                                              

Since    ni = Pi       �   ni =   e –Eg/2kt   ------------------------- equation 1.7  

                       And    nop0  = ni
2 

And      ni = Nc e –(Ec – Ei)/kt 

             Pi = Nv e
 –(Ef-Ei)/kt    

                                 We get              = e(Ef – Ei)/kt  

                            Similarly                 = e -(Ef – Ei)/kt  

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

-------------------------------------------          

Ex 1: Consider a si sample with Nd = 1017 As atoms/cm3. Find Po at T = 300o K? What is Ef – Ei 
? 

Solution:  ni = 1.5 1010, since Nd >> ni     therefore n0 =  Nd = 1017 / cm3  

                   Po = ni
2  n0 = 2.25 103 cm-3 

                   We know that Ef – Ei = kt ln(no/ni) = 0.0259 ln(1017/1.5 1010) = 0.407 ev 

 

 

1.3.4 Dependence of “n” on temperature  

Intrinsic:                      

 We know from equation 1.7   ni =   e –Eg/2kt    

                        Substituting for Nc and Nv  

                                         ni(T)2 = (2∏kt/h2)3/2 (mn
*mp

*)3/4 e –Eg/2kt   --------------- equation 1.10 



The exponential term dominates the temperature dependence equation shown be 

 

 

 

 

 

 

 

 

 

 



 

Extrinsic: 

 

 

Observation: for the temperature range of 2.0 ≤ 1000/T ≤ 10 � 100< T ≤ 500 K 

The material carrier concentration is controlled by doping level primarily. Outside this range 
EHP generation is done thermally and is not desirable! 

1.3.5 Principle of charge compensation and space charge neutrality compensation 

 When both donors and acceptors are present the predominance of one of the dopants over the 
other one cause the material to the either p or n type as follows: 

               Nd >> Na � n-type (donor electrons compensated and exceed acceptor holes) 

               Na >> Nd  � p-type (acceptor holes compensated and exceed donor electrons) 

Space charge neutrality: 

                               Po + Nd
+ = no + Na

- -----------eq 1.11    ,    i.e. all positive charges = all 
negative charges 

To find no and po   , recall nopo = ni
2 

Eliminate po in eq1.11  �  no = ni
2/no +  ( Nd – Na ) 

Assume Nd > Nd  � no
2 – no Neff= - ni

2 = 0 , Neff = Nd – Na >0  



�  , no = [Neff + ( Neff
2 + 4ni

2)1/2 ]    ------------eq 1.12 ( n-type semiconductor) 

                  And   po = ni
2/no 

Approximation:  

                               If  Neff >>ni   � no ≈ Nd – Na ≈ Nd     ---------------eq 1.1.2a    (if  Na = 0 ,it is 
n-type) 

Note:   If   Na > Nd , find po first. 

              Po = ni
2/po + (Na – Nd)   �   po

2 - poNeff
’ – ni

2=0 

Po = [Neff
I + (NI

eff
2+4ni

2)1/2]  ,    NI
eff = Na – Nd >0  

And  no = ni
2/po       , N

I
eff = -Neff 

Approximation:  

                               If  NI eff   >> (pi = ni)  �  po ≈ Na – Nd ≈ Na  (if  Nd ≈0) 

                               No = ni
2/Na           p-type 

 

1.4- Drift of Carries in an E-field 

 Observation: Knowledge of carrier concentrations in a solid is necessary for calculating current 
flow in an E-field. In addition to the values of n and p, the ease of motion, velocity of the carriers 
and their collisions and scatterings with the lattice and impurities must be taken into account. 
The last consideration brings about the concepts of mobility and conductivity as described next. 

1.4.1-Mobility and conductivity: 

The individual electrons and holes move in many directions by thermal motion during a given 
period of time. On average they have a constant net drift velocity (which is must smaller than the 
random speed due to thermal motion). 

                               n = -µn     and    p = µp                            -------------------------- eq 1.14 

Where  µn  = e- mobility = q /m*
n        and      µp = h+ mobility = q /m*

p 

   = mean free time (mean time between collision events) 

Definition: 



1. Mobility-  The average particle drift velocity per unit electric field. 

                       

                                 

                                Drift of an electron and their motion. 

 

1.4.2- Current Flow: 

Current density (defined to be current per unit area) is the number of carriers crossing a unit area 
per unit time ( n n + p p  ) multiplied by the charge on the carriers 

                            = qnµn  + qpµp  = q (nµn + pµp )   =  σ  

                                                                                                          Where σ = q (nµn + pµp )   is called conductivity 

                            = σ       ohm’s law in point form.    ------------------eq 1.15    

                                    Ι  Ι =     and  v = ΙεΙ L 

From eq 1.15    = σ   �  v =  I =  RI     ----------------- eq 1.16    (ohm’s law in integral 
form) 

         Where    R =   =         ,     ρ = σ-1   =   resistivity 



 

1.4.3- Effects of Temperature and Doping on Mobility:  
 
Fact:   There are two basic types of scattering mechanism that influence µn and µp 
 

1. Lattice Scattering: (phonon scattering) Scattering of a carrier (while moving through the 
crystal) due to vibrations of the lattice, resulting from the temperature. Mobility decreases 
as the sample is heated. 

                                  
 
 

2. Impurity Scattering:  Scattering from crystal defects such as ionized impurities. This 
type would be dominated at low temperature, since a slowly moving carrier is likely to be 
scattered more strongly by an interaction of a charged ion then a carrier with greater 
velocity. Since the atoms of the lattice are less agitated at low temperature, lattice 
scattering thermal motion of carriers is also slower. 

                              

                                               
=
  +    -------------------------  eq 1.17 

 
 



                               
 
 
As the concentration of impurities increases, the effects of impurity scattering are felt at higher 
temperatures. Not only is mobility different for each type of carrier ( n or p), but also as the 
impurity concentration increases. This decrease is a function only of the total amount of impurity 
and not of their type of charge. 
 
 
 

                        
 
 
 
A resistivity curve done by Irvin has become a standard reference work in semiconductor 
technology. 
 
 
 



                               

 
 
 
 
 
 
 
 
1.4.4- High E-field Effects 
 
 Ohm's law (equation 1.15) is valid only for lower E-field (<103 v/cm) in semiconductor. Above 
this approximate value "σ" becomes a function of E-field and is not a constant any more. This is 
referred to as the “hot carrier effect.” In this region drift velocity saturates to a value comparable 
to the thermal velocity (107 cm/s). This behavior is typical of Si and Ge, etc. Some 
semiconductors like GaAs exhibit negative conductivity at high fields. 
 
 



         

 
 
1.5-Invariance of the Fermi level at equilibrium: 
 In the following chapters we will be considering cases in which non-uniform doping in a 
semiconductor or junctions occur between different semiconductors or a semiconductor and a 
metal. These cases are crucial to the various types of electronic opto electronic devices made in 
semiconductors. 
 
Analysis: For two materials in intimate contact (such that electron can move between the two) 
there is no current and therefore no net charge or energy transport at thermal equilibrium. Since 
there is no net energy transfer any transfer of electron from material 1, to material 2 must be 
exactly balanced by the opposite transfer of electron from 2 to 1. 
Calculations lead to f1(E) = f2(E)               ------------------------------------------ 1.18a 
There is no discontinuity in the equal Fermi level ,which means  
 

                                          = 0   ( no gradient! )  ------------------------------ 1.18b 
Conclusion: 
Rule: No discontinuity or gradient can arise in the equilibrium Fermi level Ef . 

                      Material 1                                     Material 2 

                Semiconductor 1                            Semiconductor 2 

                Semiconductor                                        Metal 

               n-type semi conductor                   p-type semi conductor 

                       f1(E)                                                   f2(E) 

                      EF1                                                        EF2 

 

1.6- Fundamental Equations For Semiconductors  



1. .  = ρ(x,y,z)     ( electric Gauss' law ) ------------------- 1.19 

                                           

      = ε  = electric displacement vector  

      = electric field vector 

 

2.  . cond = - ρ(x,y,z)       (law of conservation of charge) 

                                      

         cond = It is the conduction current density 

3. Use equation 1.19 to obtain: 

             .  =  

                      = - V 

                     
2V = -    (poisson’s equation)    ----------------- 1.21 

                     2 =  +  +   

4. Current Density Equations: 

    Jn = qµnn  + qDn n   
     jp =  qµppε – qDp p 
            jcond = jn + jp         --------------1.22 

 =  gn – rn +   .jn 



              = gp – rp -  .jp       continuity equation -------- 1.23 

 

Note: 1.  =   +   +     is the Del operator 

   Equation .  =  +  +     (divergence) ;  (gradient) 

                    = 2 = �2/�x2 + �2/�y2 + �2/�z2  (laplacian) = Divergence of gradient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1.7 SELECTED EXAMPLES 

 

The following examples are selected from several texts; therefore there may be some 
notation differences which should be kept in mind. 

 

CHAPTER 1 EXAMPLES 

EX1) Chapter 1 

A silicon sample is doped with 1017 As/cm3. 

Find equilibrium hole concentration (po) ? 

Where is Ef relative to Ei ? 

Solution: 

 since Nd >> ni = 1.5 1010  � no = Nd = 1017/cm3 

        po = ni
2/no = 2.25 103 

Ef – Ei = KT ln (no/ni )= 0.407 ev 

 

                     

 

EX2) Find the resistivity of the intrinsic Ge at 300ok? 

Solution: intrinsic material � no = po = ni = 2.5 1013/cm3 

   From appendix µn = 3900 , and µp = 1900 cm2/v-s 

   σi =  q(µn + µp)ni = 2.32 10-2 (Ώ cm)-1 



         ρi = 1/σi = 43 Ώ-cm 



EX 3) Chapter 1: (given below) 

 



 

 

 

 

Note:                    E =  mV2 

                             E =  KT  

 Therefore   V = (2E/m)1/2 = (3kt/m)1/2 

The  resulting current density will be: 

        Jth = qnvrms = 1.59 1015 A/m2 

       I = jth A = 1.25  109 A   quite high! 

Current is high due to our assumption of all electrons move simultaneously at vrms. 



 

                                                                       

 



 

 

Note :  Na
- = na = Na f(EA) = ionized acceptor concentration 

In general equation 1.11 for charge neutrality becomes 

          .                 n + NA = p + Nd 

                            

 

 



 



 

 

 

 

 

 

 

 

 

 

 



 

                            CHAPTER 2 – Excess Carriers in Semiconductor 
 
2.1- Diffusion: When excessive carriers create non-uniformly in a semiconductor, the electrons 
and holes concentrations vary with position in the sample. Any such spatial variation (gradient) 
in “n” and “p” calls for a net motion of the carriers from region of high concentration to region 
of low concentration. This type of motion is called diffusion and represents an important charge 
transport process in semiconductor. 
 
Observation: The diffusion is the natural result of the random motion of the individual charge 
carriers due to the thermal energy present. 
 

 
 
 
Ex: Spreading of a pulse of electrons by diffusion. 
 
Observation: The current flow is proportional to the gradient decrease (or slope) of the 
concentration, thus 
 
          ( jn )diff = q Dn dn/dx 
           ( Jp )diff = -q Dp dp/dx       
 
Note: Electrons and holes diffusing in the same direction, causes opposite currents. 
2.2 - Drift and diffusion of carriers: 
 
The two basic processes of current conduction are 

1. Diffusion due to a carrier gradient. 
2. Drift due to an electric field. 

  
Therefore:          jn(x) = qµnn(x)ε(x) + qDndn(x)/d(x)               ---------------- 2.2a 



                                     Drift                     Diffusion 
 
                            Jp(x) = qµpp(x)ε(x) – qDpdp(x)/d(x)               ----------------- 2.2b 
 
 
The total current density is  
                                               J(x) = jn(x) + jp(x) 
                                           
                                               J(x) = q(µnn(x) + µpp(x))ε(x)  +  q(Dndn(x)/d(x) -  Dpdp(x)/d(x) ) 
 
                    
 

                              
 
Observation: 
Minority carriers can contribute significantly to the current through diffusion (for a significant 
gradient, dk/ dx or dp/dx ), since drift term is proportional to n or p and is thus small. 
 
 
2.2.1- Influence of E-field on energy bands: 
 
Observation: Since the electron drift in a direction opposite to the field, the band energy for 
electrons should increase in the direction of the field. However the electrostatic potential 
function varies in the opposite direction because: 
 
                                         , ε(x) = - dv(x)/d(x) = - d/dx(Ei/-q) 
 
                                         ,  ε(x) = 1/q.dEi/dx 

                                 



 
Note: Ei is chosen as a convenient reference to calculate V(x) since we are interested only in 
spatial variation of V(x). 
 
Point of interest: 
 To remember the slope, we know that the diagram indicates electron energies and the slope 
should be such that electrons drift “downhill” in the field when E points “ uphill” in the band 
diagram. 
 
2.2.2- Equilibrium: 
 
Definiton:   
1. Equilibrium refers to a condition of no external excitation except for temperature and no net 
motion of charge I.e. a sample at cont temp, in the dark and no fields applied on other hand. 
2. Steady state: Refers to a non-equilibrium condition in which all processes are constant and 
are balanced by opposing processes e.g. A sample with a constant current or a constant 
generation of EHP's balanced by recombination (i.e., all transients have expired!) any 
equilibrium is at steady state but not vice versa.  
For a semiconductor at equilibrium no net current flows. 
                          Jn(x)=0, Jp(x)=0, ε = -dv/dx 
From 2.2a      
                     qµnno(x)ε(x) + qDndno(x)/d(x)  = 0    -------------------- 2.5 
 
                        no = Nce

-(Ec-Ef)/kt 
                 
                         dno/dx = -1/kt . Nc (dEc/dx – dEf/dx) e-(Ec-Ef)/kt  =  no (q/kt)(dv/dx) 
 
Substitute and simplify: 
  
Thus Eq 2.5 �  D/µ = kt/q = 0.026 v for t=300K   ------------------- 2.6 (Einstein relation) 
 
Observation: Eq (2.6) allows calculating either “D” or “µ” from a measurement of the other. If 
applies to “n” or “p” type. 
 
2.3- Continuity equations 
 
Continuity equations: 

 �n/�t = gn-rn+1/q . �Jn/�x   …………………………………. (2.7a)           

 �p/�t  = gp-rp+1/q . �Jp/�x   ………………………………..  (2.7b) 



 
 
 
gn,gp =   electrons and holes generation rate (cm3/ sec) Caused by external influence such as 
optical excitation. 
 
rn  =  electron recombination rate in p-type semiconductor under low-level injection (i.e. ∆p<<po 
for majority carriers) 
 
Then rn = np-npo/τn = n’ /τn  ……………………………………. (2.8a) 
 
Where np = majority carrier density 
 Npo = thermal equilibrium minority density. 

 τn = minority carriers life time. 
 
Similarly,  
 rp = pn-pno/τp= p’/τp  ……………………………………. (2.8b) 
 
Note: If electrons and holes are generated and recombined in pairs with no trappings then τn = τp 
 
Definition: Minority carrier Life time :   

It is a decay constant (Ae-t/τ) and indicates the average time interval between the introduction and 
recombination of minority carriers. 

Fact: Continuity equations are derived from Maxwell’s equation: 

                    .J = -�p/�t   (i.e. conservation of charge) 

Eq:         �j/�x = -�/�t(-qn)+q(rn-gn) � �n/�t = gn-rn+(  �j/�x) 

2.4-  Non-Equilibrium carrier concentrations: 

 Consider an extrinsic s/c (n-type) optically excited to generate EHP’s by photons with sufficient 
energy (hf≤ Eg). This creates an equal number of conduction electrons and valence holes, similar 
to thermal excitation of electrons. 



                                       

          Total combinations are: 

                   n=n0+n’    and p=p0+p’ 

Example 1 : Decay of Photo excited carriers: 

Assume the illumination has been at steady state but at t=0, it is removed. EHPS are generated 
uniformly throughout the sample with a generation rate g. show the variation of pn with time. 

Solve:  Prior to t=0(i.e. at t=0-)                                   E = 0; 

Boundary conditions (B.C) are :                            ∂pn/∂x = 0 Uniform generation; 

                                                                                    ∂pn/∂t = 0 Steady State 

 

                                                        

Therefore, Cont. Eqn. => ∂pn/∂t = g-( pn  - pno / τp )   => pn  = pno  +g τp  = const. 

                                          pn(0)= pn0+g τp 

At t=0+  Boundary conditions are:             

     Pn(t)/t→∞ = pn0 

Cont. Eqn. => ∂pn/∂t = ( pn  - pno / τp )    

Pn(t) = pn0 + τpge-t/ τp        (satisfies B.C.)     (2.9) 

Excess carrier = Pn
’(t) = pn- pn0= Ĩpge-t/ Ĩp  



                    

 

 

Note: According to Stevenson keys method, this can be used to measure minority carrier lifetime 
(τp) 

A possible setup is as follows:  

                  

 

If a uniform light pulse is shined for a short time, the EHP generation causes an increase in δ=> 
increase in I. When the pulse is gone the decay of this conductivity is a measure of τp. The only 
condition is that the pulse width<< τp. 

Example 2: Steady state injection from one side: 

Consider the figure below where excess carriers are injected from one side so that EHPs are 
generated at the surface only. Find the minority carrier distribution as a function of X. 

a) Let w→∞ 

B.C   pn(x=0)=const. = pn(0)                         



                                             

         pn(x=∞)= pn0 

 

Continuity  eqn:  ∂pn/∂t =-pn  - pno / τp -1/q (∂jp/∂x) 

   

Current density equation (Eq: 2.2b): jp = qµppε - qDp∂p/∂x 

 

                                

�  -(pn- pn0)/ τp  + Dp (∂
2 pn/∂x

2) = 0      (2.10) 

� pn(x)= pn0+[ pn(0)- pn0]e
-x/2p                                                                                            (2.11) 

Where  Lp= √Dp τp  is the diffusion length 

             P’(X) = Pn(x)-Pno = [ pn(0)- pn0]e
-x/Lp                                                              (2.12) 

 

b) W is finite and it Extract all excess carriers at X=W 

          B.C   pn(0) = const. 

                    Pn(w)= pno  

Eq. (2.10) =>pn(x)=pno+[pn(0)-pno]          sinh(w-x/Lp)/sinh(w/Lp)                           (2.13) 

Current density extracted at X=W is  

Jp(w)=-qDp(∂p/∂x) = q[pn(0)- pn0] (Dp/Lp)[ sinh(w/Lp)]           at x=w                  (2.14) 



Note: Eq (2.14) can be shown to be related to the base current in an npn bipolar junction 
transistor. 

                                                             

 

 

Silicon resistivity:  (n type and p type) 

 

 

 



 

2.5  The Hall Effect 
The Hall Effect is based on the force exerted on a moving charge as it passes through a magnetic field. 
It is an important research for determining the carrier type(e- or h+),concentration (n,p) and mobility (µn 

, µp) for the majority carriers in the semiconductor. 

 

 

 

a. The magnitude of (VH) determines the majority carrier concentration (n) for the s/c. 

b. If a measurement of resistance (R) is made, ρ can be calculated : 

R =ρL/wt  => ρ=Rwt/L  =>(VCD/Ix)/(L/wt)                    (8.44) 

c. Finding ρ allows mobility to be found next as : 



σ = qnµn => µn = σ/qn =>(1/ρ)/qn =>1/ρqn       (8.45) 

 

Note 1:  

If p-type material is used, h+’s are deflected toward the same side (i.e.”-Y”) since h+’s flow opposite 
to e-‘s. Therefore VH is negative for p-type material but has the same form as eqn. (8.43). 

Note 2:  

Hall coefficient is defined to be: 

RH=1/qn                        (8.46) 

Therefore, eq 8.42 => εy=RH JX Bz        (8.47) 

Eq 8.45 => µn = RH / ρ         (8.48) 

& n=1/q RH  = (j* B z  )/q εy  = (Ix /wt) Bz   /q(VAB/w) => n=  Ix Bz /qtVAB   (8.49) 

2.6 Haynes-Shockley Experiment 

When localized light pulses generate excess carriers in a s/c (as shown below), the continuity eqn. after 
the pulse (g=0) is given by 

                    

Eq. (2.7a) gives  

∂p/∂t = gp - rp -1/q(∂jp/∂x)         (2.15) 

  rp= pn  - pno / τp             (2.16) 

 jp=qµpρε-qDp∂p/∂x =>∂jp/∂x = qµpε∂p/∂x- qDp∂
2p/∂x2  

 

eq (2.15) => ∂p/∂t = - pn  - pno / Ĩp  - µpε∂pn/∂x + Dp∂
2 pn /∂x

2     (2.17) 

 



a) Case 1: (E = 0) 

No E-Field is applied i.e. ε = 0 

Soln. to Eqn. (2.17) is a “Gaussian Distribution”; 

At t=o+  pulse is removed and the excess carriers diffuse as : 

Pn(x,t) = Pno + ∆p/(2√∏Dpt) .  b  e-x2/4Dt-t/τp)       (2.18) 

Where  ∆p is excess holes at t=0(per unit area) over a small distance (δx) 

                                      

Note: The exponential factor predicts the spread of pulse in the positive and negative X directions. 

Check: 

                                 

             t=o; Pn - Pno =    ∆p/ δx 

             t=∞; Pn - Pno  = 0 

             x=0; Pn - Pno = ∆p/(2√∏Dpt) 

             x=∞; Pn - Pno  = 0 

Case 2: (ε ≠ 0) 

 An electric- field (ε or E)  is applied along the sample; the solution is the same as eq. (2.18) except  
“x” should be replaced with “x- µpεt”. 

Thus the whole package of excess carriers moves towards the negative end of the sample with the 
drift velocity “µpε”. 



At the same time, the carriers diffuse outward and recombine as in the field-free (ε=0) case. 

Pn(x,t)=Pno+∆p/(2√∏Dpt) . e
-x2/4Dt-t/τp)  

Xo= µpεt. 

                                

In this case,Dp can be calculated from a simple measurement as follows: 

At t=td,   x=xd+∆x/2,      ( xd= µpεtd) 

Use case 2 results (point A): 

 

Since ∆x can not be measured directly, an experimental setup (shown next) is used to display the 
pulse of x=xd on an oscilloscope as the carriers pass under a detector. We measure “∆t” and then 
relate it to ∆x: 

   ∆x=Vd∆t = xd∆t/td 

 

 

 



         

 

Let L=xd= length between probes. 

Therefore, Dp=(∆x)2/16td =( ∆tL/ td)
2/16td 

Dp = (∆tL)2/16t3d 

 

Also µp can be found : 

Vd = L/td 

µp = Vd/ε    (ε=Eo/Lo) 

� µp=L Lo/ Eo td 

 

 

2.7 “Four point” Probe method 
This is the most common method for measuring “ρ”, a small current from a const current source is 
passed through the outer two probes. For a thin wafer with thickness “w” much smaller than other 
dimensions (s or d), the sheet resistance can be calculated. 
 
    
 



 

 

 
 
 
 
 
 
 
 
 
 
Sheet Resistance concept: 
 

                                
R=ρa/wd 
For a square,a=d and R=Rs 
Rs=ρ/w (known by measurement) 
Rs=(V/I) CF 
Therefore, ρ =w Rs  

Where CF=The collection factor is shown below. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Special case: In the limit when d>>s =>CF=π/ln2  = 4.54 

 
 
EXAMPLES : 
 
Ex 11 A) 
 
A Sample of Si is doped with 1017 phosphorous atoms/cm3. What would you expect to measure for its 
resistivity? What Hall voltage would you expect in a sample 100µm thick if Ir=1mA and  



Bz= 1kg=10-5wb/cm2. 
 
Solution:  
  From Fig 3-2.3, the mobility is 700cm2/(V-s). Thus the conductivity is  

   σ= qµnn0 = (1.6  10-19)(700)(1017) =11.2(Ώ-cm)-1 
  Since p0 is negligible. The resistivity is  

ρ = σ-1 = 0.0893Ώ-cm 

 The Hall coefficient is  

   RH = -(qno)
-1 = -62.5cm3/C 

 From Eq (3-49), or we could use Eq (3.53). The hall voltage is 

 VAB  = ItBz * RH/ t   =  (10-3A)(10-3wb/cm2)*(-62.5 cm2/C)/10-2 

 =-62.5µv 

 

Ex 11 B) 

The p-type base region of the n-p-n bipolar silicon transistor has a width of 2.010-4cm and is doped 

with 1.0 1015 acceptors/cm3. Electrons are injected into this region from the emitter at xt,producing a 
uniform gradient  of electrons there with the electron concentration dropping to zero at the collector at xc. 

If 2.0 1014electrons/cm3 are present at the emitter edge of the base region (xE). (a) calculate the diffusion 
current density of electrons through this base region under steady state conditions (b) What electric field 
must be present in this base region to yield an electron drift current density exactly equal to the diffusion 
current density just calculated?  (c) Determine the voltage drop across this base width corresponding to 
this field. 
 

Solution :   (a) From Appendix, µn= 1500cm2/v-sec, and from the Einstein relation , Dn= (0.026V-1)(1500 
cm2/V-sec) or Dn=39 cm2/sec. From Eqn (2.1) 

(Jn)diffusion = q Dn dn/dx 

   = (1.6 10-19C)(39 cm2/sec) (2.0 1014/2.0 10-4)cm-4 

  = 6.2 A/cm2 

 

(b) from Eq (2.3)  

     (Jn)drift = qnµnε   (use average electron density); 

6.2 A/cm2 = (1.6 10-19C)(1.0 1014cm-1)(1500 cm2/v-sec)(ε V/cm) 



 ε= 2.6 102v/cm. 

(c) Voltage drop: V=εW  = (2.6 102)(2.0 10-4) = 5.2 10-2V. 

  

Ex 12) A bar of n-type silicon at 300k contains 51015 donor impurity atoms /cm3 and exhibits a 
minority hole life time of 1 µs. The sample is illuminated with light of wave length λ = 8000A. Which 

introduces 1.0 1014 excess electron-hole pairs/cm3.  

(a) Prove that this illumination will excite electron-hole pair in the sample. 
(b) How long after the light is shut off will it take for the excess hole density to fall to 10% of its 

initial value. 

Solution:  E=hf;   f=C/λ ; E=Photon Energy. 

(a) The photon energy for λ= 8000 10-8 cm is  

= (6.63 10-14J-sec)(3 1010cm/sec)/8000 10-8cm 

=2.5 10-19J      or     2.5 10-19J/1.6 10-19J/ev  = 1.55eV. 
 
Since this photon energy exceeds the silicon gap width of 1.12eV. Electron-hole pairs will be excited 
across the gap. 
 
(b) ∆p = ∆poe

-t/τ or t= -r ln (∆p/∆po) 

= -(1.0 10-6sec)ln(0.10) and t=2.3µsec for the excess hole density to reduce to 10% of its 
original     value. 

Ex 13 A) 

Let us assume a sample of GaAs is doped with 1015 acceptors/cm3. The intrinsic carrier concentrations of 
GaAs is app. 106cm-3; Thus the minority electron concentration is no=ni

2/po = 10-3cm-3. Certainly the 
approximation  po>>no is valid in this case. Now if 1014 EHP/cm3 are created at t=0, we can calculate the 
decay of these carriers in time. The approximation δn <<po is reasonable, as fig 4-7 indicates. The fig 
shows the decay in time of the excess populations for a carrier recombination life time of   τn= τp = 10-8s. 



                

There is a large percentage change in the minority carrier electron concentration in this example and a 
small percentage change in the majority hole concentration. Basically, the approximations of extrinsic 

material and low-level injection allow us to represent n(t) in Eq (2.7) by the excess concentration  
and p(t) by the equilibrium value po. 

Note: n (+) = no+δn(t) 

Therefore, δn(t)= n’(t) excess carrier. 

 

 

 

 

 

               


