CONTENTS

Part 1: Introduction to Crystal Properties

Semiconductors

- Solid materials
- Semiconductor Latices
- Miller Indices

Part 2: Energy bands and charge carriers: Basic Principles

Chapter 1:

Energy Bands and Charge Carriers

- 1.1 Bonding Forces and Energy Bands
- 1.2 Charge Carriers in Semiconductors
- 1.3 Carrier Concentration
- 1.4 Drift of carriers in an E-field
- 1.5 Invariance of the Fermi level at equilibrium
- 1.6 Fundamental Equations For Semiconductors
- 1.7 Examples

Chapter 2:

Excess Carriers in Semiconductors

- 2.1 Diffusion
- 2.2 Drift and diffusion of carriers
- 2.3 Continuity equations
- **2.4 Non Equilibrium Carrier Concentrations**
- 2.4 Experiments to measure Semiconductor Parameters
- 2.5 The Hall Effect
- 2.7 "Four point" Probe method

Part 3: Semiconductor Devices

Chapter 3:

Semiconductor Diodes

- 3.1 PN Junctions
- 3.2 Forward and Reverse Biased Junctions
- 3.3 Metal Semiconductor Junctions
- 3.4 A Small Signal Model of the Diode
- 3.5 Switching Transient
- 3.6 Examples

Chapter 4:

Bipolar Junction Transistors

- 4.1 Principles of Operation
- 4.2 Device Analysis
- 4.3 Emitter Heavy Doping Effects and Band Gap Narrowing
- 4.4 Frequency Response
- 4.5 High-Injection Effects
- 4.6 Impurity Gradient in the Base
- 4.7 BJT Circuit Models
- 4.8 Examples

Chapter 5:

Field Effect Transistors

- 5.1 Junction FETs (jFETs) and MESFETs
- 5.2 The MOS Capacitor
- 5.3 MOSFETs
- 5.4 Examples

Chapter 6:

Fabrication Technologies for Monolithic Integrated Circuits

- Oxidation
- Photolithographic Techniques
- Thermal Oxidation
- Ion Implementation
- CVR Processes

Chapter 7:

Overview of Microwave

- 7.1 Introduction
- 7.2 Properties and Disadvantages of Microwaves
- 7.3 A Short History of Microwave Engineering

7.4 Applications of Microwaves

Chapter 8:

PIN and Varactor Diodes

- 8.1 PIN Diode Analysis
- 8.2 Equivalent Circuit
- 8.3 PIN Diode Applications
- 8.4 Switching Speed
- 8.5 Varactor Diodes
- 8.6 Max RF Power Limit of a Varactor

Chapter 9:

Microwave Bipolar Junction Transistors (Bjts) & Heterojunction Bipolar Transistors (Hbts)

- 9.1 Bjt Physical Structure and Configurations
- 9.2 BJT Transistor Action and Operation (Active Mode)
- 9.3 Bjt Small Signal Hybrid PI Equivalent Circuit
- 9.4 Bjt Four Modes of Operation
- 9.5 Bjt Power Frequency Limitations
- 9.6 MW Bjt Applications
- 9.7 Hbt Physical Structure & Operation
- 9.8 Microwave Integrated Circuits (MICs)
- 9.9 MIC Materials
- 9.10 Hybrid Microwave Integrated Circuits (HMICs)
- 9.11 MMIC Design Consideration
- 9.12 MMIC Fabrication

Appendix