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Numerical Analysis and Computer
Simulation of Magnetostatic Wave
Propagation in a YIG-Loaded Waveguide

Matthew M. Radmanesh. Member, IEEE. Chiao-Min Chu, and George 1. Haddad

Abstract—Magnetostatic Wave IMSW) propagation in a finite
width ferrite slab placed inside and along a rectangular wave-
guide is investigated theorctically and numerically. Using the
integral ¢yuation method, the general solution {o the problem
of wave propagation has been derived for the first time here in
this paper. Thin-slab approximation made the derived solution
more tractable and provided the dispersion relations in terms
of an infinite determinant. From the presented results, it can be
eoncluded that in order to obtain high value of group time delay
over a large bandwidth thin, narrow slabs placed in the center
of the puide must be used. On the other hand, to maximize the
device bandwidth, thin slabs placed at the top or bottom of the
guide are most appropriate.

. INTRODUCTION

NALYSIS ol magnetostatic wave (MSW) propagation
Ain i ferrite material in a normally magnetized structure
bound by metal surfaces has been extensively reported in lit-
erature | 1]=[5], MSW propagation in a ferrite slab completely
filling & wavepuide has also been analyzed and documented
[6]. Recemly the analysis of magnetostatic waves in a YIG-
loaded wuveguide was reported [7], |8]. The mathemati-
cal analysis carried out by these recent investigations were
based on a1 parallel magnetic bias field which led to the
propagation of magnetostatic surface waves (MSSW). These
wives are highly nonreciproeal with respect to the direction
of propagation and unsymmetrical with tespect to the slab
position in the waveguide. Koshiba er al. [9], [10] provided
a unified numerical approach based on the finite-clement
method where both cases of parallel and normal magnetization
were studied. However the problem of magnetostatic wave
propagation in @ YIG slab enclosed in a wavezuide with
normal magnetic bias field (Magnetostatic Forward Volume
Waves. MSFVW) has not been approached using the integral
eyuation methoed (see Fig. 1), A brief account of this method
was presented n the 1988 [EEE-MTT's Digest [11]. In this
Digest article. the problem of MSW propagation in a normally
magnetized Y1G-loaded waveguide was sketchily outlined and
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Fig. 1. Device configuration for H,. nomal to the YIG slob.

yel no atempt to solve the problem or provide supporting
formulation or reasonings was undertaken and thus a very
scanty and ambiguous view of the resolution of the prablem
was presented. The present work, however, attempts o clear
the way and present a highly coherent and understandable view
of the MSW propagation and all of its inherent complexities.

in this paper, the analysis of magnetostatic waves in a
waveguide structure with the normal magnetic field as shown
in Fig. 1 is caried oul in detail. For this configuration. when
the gap length (rg) is zero, the problem can be treated a5 3
boundary value problem and conventional mede analvsis Lech-
nique can be employed effectively to solve for the dispersion
characteristics for the different modes of propagation [12].

However, when x; is nonzero. the mode analysis techmques
appear 1o be fruitless and the integral equation method seems
to be one of the most effective method in this case and provides
the desired dispersion relations.

Section Il briefly describes the underlying Magnetostaric
EM Fields. The integral equation method and the gencral
solution for the scalar magnetic potential function in 1erms of
an integrodifferential equation is presented in Section 11 In
Section IV, using thin slab approximation an approximate so-
lution is obtained. Numerical analysis and results of computer
simulation for the first-order mode are presented in Section V.
Summary and conclusions along with some final discussions
follow in Section V1.

[I. MAGNETOSTATIC EM FIELDS
In this Section. the mathematical foundation for magne-
loslatic wave propagation in unbounded and bounded ferrire
media is imreduced and the governing equations are derived.
Magnetostatic waves have wavelengths much areater than the
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lawice spacing. therefore it is appropriate to use classical theory
rather than quantum theary, thus the small signal theory of a
lossless ferrite is based on the Maxwell's equations.

The tensor permeability of a ferrite is derived using New-
ton’s equation of motion where the exchange and core losses
are neglected. Ulilizing this permeability tensor, the wave
propagation in unbounded ferrites leads to three regions of in-
terest in the frequency-wave number (w-k) plane, It is seen that
magnetostatic wave propagation is possible only in a limited
range of wavelengths [13]. In this range of wavelengths, the
electric field is negligibly small compared with the magnetic
field and can be neglected. Thus Maxwell's equations can be
simplified and the magnetic field can be derived directly from
a scalar potential function. When this approximation is used
the governing partial differential equations inside as well as
outside the YIG slab can be derived as follows:

Vxﬁ:ﬂ—'ﬂ='€”lf[:r.,y,z}
T.h=0 (1)
V. [;:J-'C"\P[J:,y_:)} =1 (2)

Where i is the permeability tensor, % is the small signal
magnetic field intensity and U{x, 3. 2) is the scalar magnetic
potential function. It should be noted that in the air region
outside the YIG slab, (2) is valid except for  which should
be replaced by scalar jey, the permeability of free space,

Utilizing these equations, Wave Propagation in a YIG
loaded rectangular waveguide under the magnetostatic ap-
proximation can now be approached and a ser of boundary
conditions which must be satisfied at the metal surfaces can
be derived. It is further assumed that the transverse dimensions
of the waveguide are small compared 10 the electromagnetic
wavelengths and thus the waveguide's electromagnetic modes
are gither cut-off or leaky waves,

IIl. THE INTEGRAL EQUATION METHOD

The analysis of the magnetostatic wave propagation in a
finite-width YIG slab appears to be feasible by the utilization
of the integral equation method. To be able to use this method
effectively, it is best to deduce the integral equation in the
steps as outlined in the following. The time dependence is of
the form &', {wr being the angular frequency) and is omitted
in all of the following expressions. The integral equation is
developed in the following systematic way:

l. the magnetostatic wave propagation is assumed to be in
the v-direction and thus of the form ¢=75% where K is
the wave number. In this manner, the y-variation of all
functions invalved in this study is of the form e~ /%¥.
which can be omitted since it is a common facter in all
of the subsequent formulations.

2. An unknown scalar magnetic potential function inside
the ferrite slab is assumed. The potential function for all
the points inside the slab is denoted by (.3, z). Based
on T(r, y. z). fictitious magnetic sources can be ob-
tained. The scalar magnetic potential function W(z, . z)
inside the YIG region can be written as:

Uir,y z) = Bfx, z)e” 70V, (3)

Then, except for the common factor «=/*%_ the small
signal magnetic field intensity, the magnetic flux densary,
and the magnetization intensity vectors in the Y15 region
designated by h. % and 77 respectively are given by

h=%a— jKdjp (4)
b= pol,] (5
m=([E|-[7)-% (6}

where § is a unit vector in the y-direction, [7] is the
identity tensor and [, ] is the relative permeability 1ensor
[12].

. From the small signal magnetization intensity (7] given

by (6), the magnetic sources can be determined. The
total magnetic charge density consists of wo portions:
al the magnetic volume charge density (5, and b) the
magnetic surface charge density (p,). These magnetic
sources can be expressed as

pe ==V (e IRy (7

oy =T -1 (8

where # is a unit vector normal 1o the «lab surfuce.
Substituting (6) in (7) and (8) and upon further sim-
plifications, p, and p. are finally given by

=1
Pyl z) = 'N———‘I':,I_:.,z_‘.- 9
u
Pal®g.z) = —(pe = 1) (xp.2) — W WD (xy. 2}
(10a)
pola—ap 2] = (p - 1)@ {a — ry.2)
+ K K®(a — 24 2 [ 10bi

where ¢ and K are the diagonal and off-diagonal
elements of the permeablity tensor, respectively | 12), and
@.. is the second-order derivative of & with respect 1o
z and @ is the firsi-order derivative with respect to .
From (10}, it can be seen that unlike parallel magne-
tization case [8], the surface charges at = = 2| or 2o
are absent and the only existing surface charges are al
* = xp and T = u—xy. It will be seen that this difference
in the charge srrangement and mathematical form for the
two cases will lead to different formulations entirely,

- The Green's function Glu. z)e %4, for 4 magnetic line

source located at (x', 2°) along and inside 4 waveguide,
is given by
-
Gle,a',z.2") = EA,, cosinra’ fu) cos{nme/a)
n=[

- Coshy, (b — 2" Coshi~) z(11a)
for z < 2'. and by:
Glz.z'.2,2) = Zﬂnlzﬂs(rmx'ﬁjj cos{nz/a)

n=()
- Cosh y, (b — z) Cosh ) 2" (11h)
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for = = 't where
-2
e by pry e
el 4 fon ) sinh v b
7= K+ (nwfa)?)M?

and &, 15 the Kronecker delta function.

Al this point in the development of the formulation, an
important distinction for the magnetic potential inside the
wavegnide and inside the ferrite slab is made as follows:

Lh

a. 7w z) s the scalar magnetic potential function
inside the waveguide (including the ferrite slab)
and is defined for 0 S 2 Saand 0 < 2 < b,

b. Plr.z) is a scalar magnetic potential function
inside the ferrite slab and is defined for 2, < = <
a— 2, and z; £ 2 % 2.

With this convention, the developed formulations which
will appear later in this work can easily be assimilated.

6. Considering a uniform waveguide cross section and
wave propagation in one unit length. and by means of the
magnetic sources (9), (10} and the suitable Green’s func-
tion (1), an integral expression for the potential function
@7(.r. ) everywhere inside the waveguide (including the
ferrile) can be written as:

i) = [[

IG area

ool NGl et 2 2 ) de d

o+ f gl 2 )Gz, 2", 2. 2 )de (12)
YIG sides

Using 191, (107, and (11) and considering only the points
located inside the ferrite slab, from (12) an integro-
differential equation in terms of ®(r, z) is obtained:

i z)

.l..I[r.“_J- ot ; IR
=/ A2 Va0 |Gl 2. 2 )de'd

i
rao=n

- / [l'g.' = 1 (. 2" + K;K‘i’{xu,z’}]

d (:l\..l'.‘. L2 ,ld::'l

+ / [[p = 1) (a — w2} + K1 Ko = g, z’).‘

o

CGlron = gpaez.o 2 )de" (13)
Equation (13) represems the most general formulation
w the problem of MSW propagation in a normally
magnetized waveguide structure.

The integral expression given by {13) is two dimensional
and very dificult 1o analyze. Assuming the slab w be very
thin makes this equation one dimensional and tractable. With
this assumption and utilizing an effective numerical technique
combined with an exact simulation algorithm (see Appendix
Al the final resolution of the problem can successfully be
ohtained,

IV, APPROXIMATE SOLUTION -

As noted in (13}, the first term involves a second-order
partial derivative term (@..) which must be evaluated prop-
erly. To be able wo obtain @.., the thin slab is subdivided
into wo lavers of equal thickness. i.e.. zp <z = oz oand
20 £ # < zz (Fig. 1). The variation of ®({x.z) in each layer
in the z-direction is assumed 10 be linear. In this manner three
functions, each having one variable, are used 1o approximate
®(x, z) in the slab as follows:

fll{:rjl = @(L 41 :l

folz) = ®(x, 2,

falz) = Bz, za).
The linear approximation gives:

folz) - f](J:J‘

$.r.z) = 21 <2<z (l4a)
Ip = 21
)
‘Iz(z.z}:M. In %z i (14h)
I — &g
and
-2 ]
b..(r.2) = falx) -fU[-"f]'rfl(i"Je (15)

a2

where d = 20— 2, = 20— 2y = /2 and { is the slab thickness.

In the integral equation (13), the second and third terms
are surface integrals over the sides of the slab at & = uy and
o — zg. In the thin-slab assumption, instead of a continuous
distribution of surface charge in z, the charge distribution
on both sides of the slab {ry and @ — 74) in each region
71 £z < zpand zp € 2 < 2 is assumed to be uniform.
This uniform charge distribution assumplion connotes that the
surface charge in each region is equal to the mean of its values
at the edges of that region.

The main reason for uniform charge distribution at the
slab sides (z = 2 and a — xy) is the fact that B(z.2) is
evaluated only at three values of z, ie., z = 2;.2y. and 2.
The function ®(z, 2} between these values is unknown and so
all the eyuations should involve calculations of &(z. =) strictly
at these three values of z. The continuous charge distribution
would not be a plausible assumption under these conditions.

Substituting for G(z.x",z,2') in (13), carrying out the z-
integrals and evaluating the potential function Dz, zarz =
Z1,2g, and z3 would yield a set of three coupled equations in
terms of f(x), fo(z) and f2(x). By intreducing the following
functions

Gulz) = folx) = 2folz) + fi(z)
Gulz) = folx) + 2folz) + fi(z),

(16)
(171

This set of three coupled equations can be reduced to a sel of
two coupled equations which is more attractive 1o work with

Golz) = - i m

=0 afl + 60[;,]

2Lf'l Qn

Gilx) = - nz=|] alTi) cosnwza

cosnwz/n (18a)

{18b}
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where

r

U™ = V., |(B5+BF) coshvp (b= 22) + (B + BY) cosh 4, 2,

+ 2B} cosh (b — zg) + 2B cosh —,;,zc.},

in

(1%
W=V, [[B;‘ + By} cosh vy, (b=22) + (B + BY) cosh .z,

— 2B7 coshy, (b — 24) — 287 cosh '?':120], (20)

4=z =1 T
o" =/ e Gulr)cos rde
- wd? @

T p—1 KK dG Lz
- cos ?Iu( y Gylzg) + ;——ér—ol)

nw .
+ €05 —(a — zp)
i

. (EGs[ri—In)-F ﬂ@a__f_ﬂ) 20
4 4 dz

Vo = 1/[~, sinh b},

20 22
B} :f coshey,z'dz',  BF =/ cosh;,2"dz’,
£ 2

B =/ eosh (b — 2")dz2’,

3
BY :[ cosh~, (b — 2")dz’.
r

The term Q" in (211 involves the first-order derivative of
Gs(z). The function G, () is defined to be nonzero in the YIG
and zero everywhere outside, which means it is discontinuous
atr = xpand r = @ — 2y and thus its derivatives in the z-
direction at the slab edges are undefined. This problem creates
difficulty in the evaluation of @™. To overcome this problem of
discontinuity, the function G, () is defined only in the range
Iy = & = a—xo. In this manner, the function G, () becomes
differentiable at = = 7y and a — xy and its approximate finite
series expansion can be written as follows;

o Lx
G.iz) =R S0S (z —
(z}=F+ L§=1 PLcos T (= o)

No
) Lx
+ sin I — T
; gz sin — lﬂo( o)

Ty =T a-—ap.

(22)

where pr's and g¢'s are arbitrary constants and Ny is a very
large integer number. Upon differentiation of Gu(z) and use
of the series expansion for G, (x) and (7, /dz, the expression
for @™ becomes:

—1 foa :
Qr =£ f Gylz) 08— zd
4]

lf[l:li‘2 o
i =1 / T—«N"
pu— Pty — —_—
[} 2 In[ 1 (Po T ;£=]PL)

o
; -1 .
+COE%[H—J”}{#T(PO+ E [“|:L;rﬁ>

L=1

No
KK[ . L Lr
+= 2=

. 23y
a— 2:1,'0 (H_:|

L=1
Utilizing (23} and further mathematical manipulation, |18)
yields the following set of linearly independent equations;

o

CF+ Y amnQ W™ =1,

n=l

oc
O+ Y amaQ U™ =0,

=}
o

5;;: T Zﬁrnno," [ = .
n=(

(24a)
(24b)

(24¢)

where

A=
o= T

cos ( TJ) Golx)dr.

To =

SR mT o
o =/ c08 —.1')GL.(.r}n’.r
= a

oM =

=y PP
§m = f sin (25 ) Gy(ahde
Za a )

2 a—zg = -
all + bgq) /I'-n s (ﬂ; I] cos [TL .I.'.}h':.}'.

2 “Tre  smew U
———/ sin (—;) cos | —.r';lrL'..".
af 1+ nou} T i Lo

=012 Ny

Qmp =

i —
Hmn =

and n=0.1.2.--- N,

The term Q" in (23) is expressed in terms of consiam
coefficients py and gp(L = 1,---, N,): however, through a
certain procedure it is possible to express them in terms of two
of the variables of (241 which are C™M and 57 as follows;

Po cy
4 !l

pw, | = [H]TH|CN (25
41 5!

g, S

where [H]=! is the inverse of a known matrix [H]. (see
Appendix B).

Substitution of Pp's and g;'s as given by (25) far Q% in
(24} will produce a system of linear equations in on,om,
and 57, To obtain a nontrivial selution for this solution for
this system of linear equations, it is required that the large
determinant (N, % N,) of the coefficient matrix 0 be sel
to zero. However, for practical purposes the matrix should
be properly truncated for best accuracy. The truncation cut-
off point of the matrix depends on the mode of propagation.
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For example. for the first- and second-order modes minimum
matrix sizes were found to be 4 x 4 and 6 x 6 respectively.
For higher order modes, larger matrices must be considered.

In the nexi section (24) is discussed in detail for the first-
order mode (m = 1) and a simulation algorithm and a
computer program based on a truncated matrix is developed
to provide numerical insight into the problem.

V. NUMERICAL ANALYSIS AND
COMPUTER SIMULATION RESULTS

[ Section [V, the basic formulation for magnetostatic wave
propagation for a normal magnetic bias field was derived and
was given by (24} In this section a special case i.e., that of
the first-order mode is further analyzed and sample numerical
solutions are obizined,

For the first-order mode (m = 0,1 and n = 0,1} (24)
is used 10 derive the dispersion relations. Through further
mathematical work for this mode, (24) when cast into a concise
mairix notation, becomes

L2
cl
cy
c,
st

[M(].K)] - =0, (26)

where (M0 f 4] is shown at the bottom of this page, and
where

- u=1
=
oy =
fp=11, Y K'K\x J"l)fﬁﬁ
- iy + iy | — ————— k5, | cos =
1 T T e ) 2’
(=1 . '!(EHI"" s w )
- fyy = |- —h m0s —(a — o),
(\ ] (B1y = ) A = g far J £ r;ll'JL o)
b, =
KiKym

B d
- | = ———hl, | s —zy
\ - 4o — 2ry) 32 i

(=1, . KK\= o
(Tmp fipa) = mh{,z cu-.;(_a—:nc,),
1, =
Cou-1) . K*K\w w
( —4—|h oy ) = mh33 Cos E.‘::D

"|_;.'—.1__r, ‘o KIKm ¥ )k: o
L PR ) a ) 128 | 00 ”f(u Ty,

&
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Fig. 2. Dispersion curves for different slab positions.

[H]™" = | Ay 2z oy
hay hna Ry

It is to be noted that [H] is a known matrix (see Appendix
B) which was calculated and wherefrom its corresponding
inverted matrix was worked out with the aid of a compuler,
so that the results of this inversion could be used in (26).
Requiring a nontrivial unique solution yields the dispersion
relation. This dispersion relation is obtained by seming the
determinant of [M(f.K)] 10 zero. To find the dispersion
relation for the first-order mode, the following equation must
be solved:

IM(f. K| = 0. (27

With the aid of a proper simulation algorithm, and by employ-
ing the Newton—Raphson method the determinant roots of the
dispersion relations were found through several iterations (see
Appendix A)

Fig. 2 shows the effect of slab position in the waveguide on
the dispersion characteristics. From this figure it can be seen
that the effect of slab position on the dispersion curve becomes
pronounced at the higher frequencies in the propagation band.
Although the characteristics all converge at the lower end of
the propagation band, their slopes are different, This leads to
different group time delays as can be seen in Fig. 3. This figure
shows the group time delay comesponding to Fig, 2. It can be
observed that as the slab is placed toward the center of the
guide, the group time delay increases while the propagation
bandwidth decreases.

Width effects on the device performance was alse studied
and the results are shown in Figs. 4 and 5. In Fig, 4. it can be

1+ FI‘)“.U W _F(.LUJ Hfl

Fapw" 1+ Fea W1
[M{f.K) = | Fuogl® Feg U
- - Fogli® Feyn !
F-")!luUU FﬁuUl

-

Do W1 Diag W! Do W
Doy W Doy W1 Dyo W1
+ Dy ' Dyag U! Doy U
DuQ:_l{f” ]+D1011f)'|' DEQ’]JU]
Dy U1 Dy gy Ut 1+ Dy, U1
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Fig. 3. Time delay versis frequency for different slab positions,

seen that as the normalized air gap increases the propagation
bandwidth decreases and the curves flatten out as they shift
toward higher frequencies. Fig. 5 shows the comesponding
group lime delay versus frequency. From this figure it can be
seen that as the slab width decreases (or the air gap increases)
the group time delay increases toward higher values with
smaller bandwidths as noted earlier. The group time delay at
smaller slab widths remains constant in a larger bandwidth and
also has a higher value. This property can be used effectively
in device design to obtain a constant, high group delay per unit
length in a desired frequency band. Fig. 6 plots wave number
K versus the normalized air gap [2xo/a). In this figure, the
information of Fig. 4 is rearranged in a different fashion. It
can be seen that the wave propagation at small slab widths
{or large air gaps) is possible only at higher frequencies with
smaller wavelengths {or higher X). Once the slab width is
chosen, Fig. 6 shows the frequency a1 which the device must
be operated to obiain a certain wavelength, and vice versa.

As can be observed from these results, the effect of finite
sample width is significant in the low-wave number region
which is in good agreement with earlier works [9]. [10], and
[14].

VI SUMMARY AND CONCLUSION

Magnetostatic wave propagation in a normally magnetized
waveguide structure was analyzed and the general solution
1o the problem with the use of the integral equation method
was derived. Thin-slab approximation led to a set of linearly
independent equations which provided the dispersion relations
in terms of an infinite determinant, Using proper truncation
procedures several impartant effects were studied. The depen-
dence of the dispersion relations and group time delay per
unit length on the position and width of the YIG slah and
sample numerical solutions for the first-order mode for several
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Fig. 5. Time delay versus frequency for different slab widihs.

configurations aver a frequency range of 5.0-7.0 GHz were
discussed and the results were presented.

It was also observed that the propagating waves, unlike
parallel magnetization case, are reciprocal with respect 1o the
direction of propagation and symmetrical with respect 1o the
slab position in the waveguide.
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Fig 6. Wave number (k) versus normalized air gap for different frequencies.

From these observations, it can be concluded that to obtain
high values of group tme delay over a large bandwidth, very
thin slabs are required. To increase the time delay even more,
it is best to choose a narrow width slab and place it in the
center of the waveguide.

AFPPENDIX A
ALGORITHM FOR DISPERSION CHARACTERISTICS

The cyuution 1o be solved numerically is the dispersion
relation. a function of frequency (f) and wave number (k).
which can be written as

Dif.K)=0 (Al
where D f. A represents the determinant of the coefficient
matrix involved in the system of linear equations (M f, K')|).
Equation (A1), in general. is a nonlinear function of f and K
and can be quite complicated if the size of the matrix is large.

With the aid of the Newton-Raphson method, (A1) is solved
numerically for roots K {at a known frequency fi). The fol-
lowing algorithm details the exact steps used in programming
(A1) in order 10 find its roots:

Step [ Input and Definition: Read f, = the frequency of
operation. A’y = the initial sapproximation of the root of:

Step 2. Initialization: Set iteration counter 1 = 1. Sel the
correction term
Ay =0 (AZ)
{C) is an arbitrary large positive number),

Step 3. Compute successive approximation of root using
the Newton-Raphson iterative formula:

Dif. &)

Ky =K; - ————
: D'{f:. K.).

(A3)

Compute the magnitude of the correction term in the curren
iteration:
Ay =Ky = Kil. (Ad)

Step 4. Test for convergence or failure to converge:

LI Ajey € eand [I{f;. Kis)] € e, go o Step 5. If
nol continue.

201 Ay = A select new Ky and return to Step 2. If
Airr < A continue,

3 Noseti=1+1andretum to Step 3. If 7 = ¥,
select new K and retumn 1o Step 2.

Step 5. Output root K,; set K, = Ky, Write K.

APPENDIX B

The coefficient matrix [H] is given by (B1). which is at the
bottem of this page, where

a—Tg
— nmw TR
(OO = f s (r — Ty) cos —zdz.
z0 a— 2zg i)
a—Ip
i mT . . inw
(s = f €08 ———— (7 — 1p) sin —rdz,
g il = 4Fq il
a=zy
. onrm . omm
(SO = 8l ———{x — xy) cos —xdr.
. a-— 2z i

a—xn
. \ nw
lSS:]:‘ =f 51 —————
i a— 2mg

. ommw
(x = xg)sin — xdzr,
[r3

and
DK =0
1 =0.1.2.- . N
¢ = the convergence lerm and N = the maximum number n=012 _f'
ol iterations, =012 . Ny
rce)y o oy (CO%, (S0 (sCl (SO%, ]
(CCly (€O (€O COL, (SO (sl (SCIk,
[H)= | (CC)™ (Ccop™ (ceny® (cone SO (S0)5° (SC)Re (B1)
(C8)y s s (CS)p, (39 (55 {SS)k,
LSyl s csye @SN (S (5500 (s9)3 |
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